

The Open University of Israel

Department of Mathematics and Computer Science

Application Lifecycle Management Environments:

Past, Present and Future

Final paper submitted as partial fulfillment of the requirements

Towards an M.Sc. degree in Computer Science

The Open University of Israel

Computer Science Division

 Submitted by: Moshe Kravchik, 314109555

Nachal Lachish 16/10, Beit Shemesh

052-4286046

mkravchik@hotmail.com

Prepared under the supervision of: Dr. Shai Koenig

Submission date: August, 19 2009

Application Lifecycle Management Environments: Past, Present and Future

 Page 2 of 121

Acknowledgements

I’d like to thank my supervisor, Dr. Shai Koenig for sparking in me the interest in the field of

ALM Environments. Without his intelligent guidance and tremendous help in finding useful

materials this work could not happen. I would also like to thank Dr. Shmuel Tyszberowicz for

thoughtful ideas and constructive comments that guided me during this work.

I would like to thank Dr. Reuven Rosenberg for his help in proofreading and correcting parts of

my work. I’m very thankful to Evgeny Kurtser who provided me great help in editing this paper

and improving its understandability and conciseness.

I’m grateful to Mr. Avi Yaeli from IBM Haifa Research Labs and Mr. Anthony Wasserman for

sharing with me their insights on different aspects of the ALM space.

I also want to thank Railways of Israel where I wrote most of this work.

Last but not least, I’d like to thank my family that supported me throughout the 5 years of my

studies, gave me a lot of encouragement and inspiration, and eventually made this work possible.

Application Lifecycle Management Environments: Past, Present and Future

 Page 3 of 121

Contents
Abstract ..8

1 Introduction ..10

2 Background ..12

2.1 Basic concepts ...12

2.1.1 Application ..12

2.1.2 Lifecycle ..13

2.1.2.1 Lifecycle definition ..13

2.1.2.2 Processes and activities ..14

2.1.3 Management ..18

2.1.4 Environments ...22

2.2 History ...23

2.2.1 Evolution of CASE ..23

2.2.2 IPSE ...26

2.2.3 PCTE ..31

2.2.4 ALM 1.0 ..34

3 ALME Classification Framework ..36

3.1 Classification Aims and Principles ..36

3.2 Related work ..37

3.3 Classification Framework ..38

3.3.1 Technical aspects ...40

3.3.2 Organizational and Business Aspects ..42

4 Case Studies of Current ALME Projects ...44

4.1 IBM Rational Jazz ...44

4.1.1 Design goals and architecture ..45

4.1.2 Jazz Platform Evaluation ...48

4.1.2.1 Breadth of lifecycle support ...48

4.1.2.2 Integration ..48

4.1.2.3 Role-based views ..55

Application Lifecycle Management Environments: Past, Present and Future

 Page 4 of 121

4.1.2.4 Traceability and reporting ..55

4.1.2.5 Process definition and automation ...55

4.1.2.6 Platforms support ...55

4.1.2.7 Distributed teams support ...56

4.1.2.8 Scalability ...56

4.1.2.9 Security ...57

4.1.2.10 Incremental implementation ...57

4.1.2.11 Integration and interoperability with existing solutions57

4.1.2.12 Breadth of vendor support ..58

4.1.2.13 Success stories ..58

4.1.3 Rational Team Concert Evaluation ..58

4.1.3.1 Breadth of lifecycle support ...58

4.1.3.2 Integration ..61

4.1.3.3 Role-based views ..63

4.1.3.4 Other technical aspects ...64

4.1.3.5 Incremental implementation ...65

4.1.3.6 Integration and interoperability with existing solutions65

4.1.3.7 Breadth of vendor support ..65

4.2 Microsoft’s VSTS ..65

4.2.1 Architecture ...66

4.2.2 VSTS Evaluation ...68

4.2.2.1 Breadth of lifecycle support ...68

4.2.2.2 Integration ..70

4.2.2.3 Role-based views ..74

4.2.2.4 Traceability and reporting ..75

Application Lifecycle Management Environments: Past, Present and Future

 Page 5 of 121

4.2.2.5 Process definition and automation ...76

4.2.2.6 Platforms support ...76

4.2.2.7 Extensibility and openness ...76

4.2.2.8 Distributed teams support ...78

4.2.2.9 Scalability ...78

4.2.2.10 Security ...79

4.2.2.11 Incremental implementation ...80

4.2.2.12 Integration and interoperability with existing solutions80

4.2.2.13 Breadth of vendor support ..81

4.2.2.14 Success stories ..81

4.3 Comverse’s DiME ...82

4.3.1 Design Goals and Architecture ..83

4.3.2 DiME Evaluation ...84

4.3.2.1 Breadth of lifecycle support ...84

4.3.2.2 Integration ..88

4.3.2.3 Role-based views ..90

4.3.2.4 Traceability and reporting ..90

4.3.2.5 Process definition and automation ...91

4.3.2.6 Platforms support ...91

4.3.2.7 Extensibility and openness ...91

4.3.2.8 Distributed teams support ...91

4.3.2.9 Scalability ...92

4.3.2.10 Security ...92

4.3.2.11 Incremental implementation ...92

4.3.2.12 Integration and interoperability with existing solutions93

Application Lifecycle Management Environments: Past, Present and Future

 Page 6 of 121

4.3.2.13 Breadth of vendor support ..93

4.3.2.14 Success stories ..94

4.4 Summary ..94

5 Trends and tendencies of ALME`s ..96

5.1 Large ALM software vendors ..96

5.2 Medium and small vendors ..98

5.3 New ALM solution providers ..99

5.4 Open source and ALM ...100

5.5 Proprietary ALM solutions ..101

5.6 Technology trends of ALME`s ..102

6 Conclusions ..105

Appendix 1: List of Abbreviations ..108

Bibliography ..110

Application Lifecycle Management Environments: Past, Present and Future

 Page 7 of 121

Table of Figures

Figure 1. The Lifecycle Processes .. 15

Figure 2. The scope of ALM (adopted from (IBM, 2008)) .. 21

Figure 3. ALM 1.0 suites (adopted from (Schwaber, 2006)).. 35

Figure 4. The developed ALME Classification Framework ... 39

Figure 5. Jazz server and clients (from (IBM, 2008))... 46

Figure 6.Jazz components (from (IBM, 2008)) .. 47

Figure 7. An EMF model definition in UML, XMI and Java (adopted from (Eclipse, 2005)) 50

Figure 8. Team Process Customization Dialog... 54

Figure 9. Rational Team Concert Components (adopted from (Rational Team Concert

Capabilities)) ... 59

Figure 10. Open Services Resources and Relationships (from (Typical Lifecycle Resources and

Relationships)) .. 63

Figure 11. VSTS architecture (from (Microsoft, 2009))... 66

Figure 12. VSTS Architecture with an Integrated Extension (adopted from (Minium, 2006)) 67

Figure 13. VSTS URI Format (from (Microsoft, 2009)) .. 71

Figure 14. Visual Studio Extensibility (from (Microsoft, 2009)) ... 72

Figure 15. Permissions settings of the Agile process template ... 73

Figure 16. Sample tool registration data ... 77

Figure 17. Accessing TFS through a reverse proxy (from (Meier, Taylor, Bansode, Mackman, &

Jones, 2007)) ... 78

Figure 18. DiME Architecture (from (Koenig, 2008)) ... 84

Figure 19. DiME Events ... 88

Figure 20. DiME Information Model (from (Koenig, 2008)) ... 89

Figure 21. The DiME Deployment Process (from (Koenig, 2003)) ... 93

file:///C:/Documents%20and%20Settings/mkravchi/My%20Documents/Open%20University/FinalWork/ALM/Final%20paper%207%20(Repaired).docx%23_Toc234631086
file:///C:/Documents%20and%20Settings/mkravchi/My%20Documents/Open%20University/FinalWork/ALM/Final%20paper%207%20(Repaired).docx%23_Toc234631087
file:///C:/Documents%20and%20Settings/mkravchi/My%20Documents/Open%20University/FinalWork/ALM/Final%20paper%207%20(Repaired).docx%23_Toc234631091
file:///C:/Documents%20and%20Settings/mkravchi/My%20Documents/Open%20University/FinalWork/ALM/Final%20paper%207%20(Repaired).docx%23_Toc234631099
file:///C:/Documents%20and%20Settings/mkravchi/My%20Documents/Open%20University/FinalWork/ALM/Final%20paper%207%20(Repaired).docx%23_Toc234631100
file:///C:/Documents%20and%20Settings/mkravchi/My%20Documents/Open%20University/FinalWork/ALM/Final%20paper%207%20(Repaired).docx%23_Toc234631101

Application Lifecycle Management Environments: Past, Present and Future

 Page 8 of 121

Abstract

Industrial software development is a complex process involving many participants, often

geographically distributed, spanning long periods of time and involving the creation and

management of large quantities of inter-related information. Due to its complexity, this process

must be managed - planned, executed and controlled - in an efficient and predictable way. Over

the last thirty years many tools have been developed to support software development planning,

execution and control. Currently these tools provide point solutions - each tool specializing in

one or two specific areas of the software development lifecycle (e.g. requirements management,

test management, defect management). However, such ―point‖ tools are not aware of the other

tools that are being used as part of the development effort. This lack of connection between

these tools has become one of the major problems of modern industrial software development.

Application Lifecycle Management (ALM) deals with approaches, methodologies and tools for

integrated management of all aspects of software development. Its goal is to making software

development and delivery more efficient and predictable by providing a highly integrated

platform for managing the various activities of the development lifecycle from inception through

deployment. Attempts to create such an integrated platform for software development are not

new. A number of systems and solutions were developed in the past to address this problem.

However, all of them have failed to provide an industrial-strength solution adequately addressing

the needs of ALM.

This work includes a systematic study of ALM tools and environments. It provides, as a basis, a

definition of ALM based on a number of existing definitions. Two major past initiatives were

studied to find the reasons for their failure and the main factors influencing the quality and

success of an ALM solution. It appears that the main reasons for the failure of these early

integrated lifecycle management systems were process and technology immaturity combined

with an inadequate understanding of the integration needs of industrial software development.

The central part of the work proposes a classification framework for ALM environments. This

framework is based on the previously defined ALM goals and the lessons learned from the

Application Lifecycle Management Environments: Past, Present and Future

 Page 9 of 121

unsuccessful early initiatives. This framework can be used for systematic assessment of such

environments for both practical and theoretical purposes. The framework consists of a set of

criteria divided into technical, organizational and business aspects. The proposed classification

framework was applied then to the analysis of three contemporary ALM systems belonging to

the new generation of ALM environments. These are Microsoft’s Team System, IBM Rational’s

Jazz, and DiME, a proprietary system wholly developed in Comverse.

In conclusion, the work contains a review of the trends and future directions of this new ALM

domain.

Application Lifecycle Management Environments: Past, Present and Future

 Page 10 of 121

1 Introduction

Today’s software development process goes through multiple stages, spanning a number of

months and sometimes years, involving large numbers of people, and managing a very large

number of entities. It is comprised of multiple activities which process and control the

development artifacts. Major savings both in time to market and cost can be achieved by

improving this process.

In recent years more and more organizations understand the need for coordinating the different

activities and a number of commercial products address this need. However, the current state of

the practice is that tools used in a real life software process are usually very task-specific, come

from different vendors, have their own data repository, use different user interface and internal

representation idioms, are not aware of one another and are somewhat difficult to integrate

(Schwaber, 2006), (Borland, 2007). Quite often general purpose tools, like Microsoft Excel and

Word, are used for many of these activities. While integrated environments for programming

related tasks are very common, their integration with other parts of the software process is quite

weak in most organizations. According to a survey conducted by Borland in 2007, ―the majority

of organizations are delivering software in extremely heterogeneous environments, with nearly

90 percent relying on multiple tools from several different vendors to get the job done‖ (Borland,

2007). This survey also found that the interoperability problems between these tools are critical.

―More than half of respondents identified one of several `connection-related` issues –

disconnected processes, lack of visibility and traceability across the lifecycle, lack of metrics,

poor interoperability between tools, functional silos – as the biggest software delivery challenge

or deficiency their IT organization needs to overcome‖ (Borland, 2007).

As a consequence, a lot of efforts, mostly manual, are required to coordinate between different

activities and tools during the application development process (Schwaber, 2006). Application

Lifecycle Management (ALM) addresses the problem of coordination of these activities,

integration between tools and process optimization and automation. The need for such

Application Lifecycle Management Environments: Past, Present and Future

 Page 11 of 121

coordination has been widely recognized by software development enterprises. More than 75%

of them are aware of or are already implementing some ALM solutions (Schwaber, 2006). The

first (and most currently available) ALM solutions have not been built from the ground up, but

have rather emerged from existing tools and provide abilities of tool-to-tool integration between

them.

Right now, a new, more fundamental approach is being taken by a number of the largest software

vendors, such as Microsoft, IBM, Borland, as well as the open source community and smaller

vendors. They are developing a more comprehensive, more open, more powerful solution to the

problem. These solutions follow a number of strategies: some (IBM (Jazz Overview), Borland

(Borland)) are building platforms to allow interfacing a number of existing tools together, some

(Microsoft (Visual Studio Team System 2008), MKS (MKS)) are building a whole new system

around a unified repository, some (Serena (Serena Sofware), Compuware (Compuware

Corporation)) are building an open ALM platform for multiple vendors to connect to. This new

generation of Application Lifecycle Management Environments (ALME) is commonly known as

ALM 2.0.

In this work the existing architectural and strategic approaches of ALM 2.0 were studied,

identifying their strengths, weaknesses and target audience. Past ALM initiatives that have failed

(sometimes now called ALM 1.0) were examined to see what caused their failure, trying to use

this knowledge in analysis of today’s solutions. In addition, the similar evolution of lifecycle

support products that emerged in two other areas: ERP (Enterprise Resource Planning) and PLM

(Product Lifecycle Management) (Abramovici & Sieg, 2002) was considered. The purpose was

to identify what strategies and approaches are going to be most successful in the ALM domain.

The central part of the work was proposing an ALME classification framework and applying it to

a number of leading ALM systems. These systems (except for DiME) were installed and used by

the author. The conclusions presented in this work are based on technical documentation,

available academic and technical reviews of the systems, independent analysts’ reviews and

personal communication and experience. They do not rely on marketing materials describing

those systems.

Application Lifecycle Management Environments: Past, Present and Future

 Page 12 of 121

2 Background

This chapter presents an overview of the concepts central to our topic, application lifecycle

management environments (ALME). It covers the application lifecycle itself and the processes

and activities that comprise it. A number of definitions of ALM and the differences between

them will be presented. Finally this chapter gives a historical overview of the tools and

environments providing support for the application lifecycle activities.

2.1 Basic concepts

In order to understand what application lifecycle management environment is we have to define

what we mean by each one of its four components: application, lifecycle, management and

environment. Each one of these concepts is widely used in different contexts and the sections

below will clarify what they mean in the context of ALM.

2.1.1 Application

In the context of ALM ―application‖ usually means a software system or a system where

software plays a central role. Other kinds of systems use different terminology for lifecycle

management. For example, the term Product Lifecycle Management is used in manufacturing

industries such as automotive, aerospace and machinery (Abramovici & Sieg, 2002). While

software applications share a lot in common with other types of products, software production

has its specificity which is central to ALM. This paper will refer to ―software application‖ from

this point forward when the term ―application‖ is used.

Historically, software development was thought of as very different from traditional product

manufacturing (Boehm, 2006). Software development was considered to be driven to a large

extent by ―creativity and inspiration‖ and thus hardly predictable. This perception led to a major

difficulty in delivering software projects on time. In order to cope with this problem as well as

the increasing complexity of software products researchers and practitioners started to study the

process of software development. In the 80’s the software process area began to develop and a

Application Lifecycle Management Environments: Past, Present and Future

 Page 13 of 121

lot of progress has been achieved since. A number of institutions have been established to study

the software development process with the most important of them being the Software

Engineering Institute (SEI) in the United States and the European Software Institute. The

International Standards Organization (ISO) has created an important ISO 12207 (software

lifecycle activities) (International Standard Organization (ISO/IEC), 1995), (Singh, 1998).

As Fuggetta points out, the initial understanding that software processes are somewhat unique

has caused a major problem (Fuggetta, 2000). The software process community has not taken

advantage of the existing research and experiences of other communities. As a result, it had to

redo a lot of the research work and to repeat the others’ mistakes just to find that a lot of

commonality exists. While focusing on the technology, the organizational and social aspects of

the software process were often forgotten. Nowadays this mistake is being corrected. Experience

shows that in order to be successful, the software process needs to consider the people involved

in it and the organization that supports it. ALM is a good example of how the lessons learned in

other industries, such as PLM and ERP are successfully applied to the software industry.

2.1.2 Lifecycle

2.1.2.1 Lifecycle definition

Software products go through a number of stages during their lifetime, such as conception,

development and deployment. Each of these stages is associated with a number of activities. For

example development includes among others design, implementation and testing. Each of these

activities can in turn be subdivided into lower level activities and tasks.

This work defines lifecycle as a set of activities and interrelations between them that are needed

for the software product through its lifetime from conception to retirement. While this definition

seems trivial, it is important to explicitly specify it, because the term ―lifecycle‖ is also used in

other contexts. For example, Fuggetta defines it as: ―a software lifecycle defines the principles

and guidelines according to which these different stages have to be carried out‖ (Fuggetta, 2000).

In his terminology a lifecycle can be waterfall, or incremental, or prototype based. In the context

of ALM the meaning of lifecycle is different. ALM should support processes, but not impose

Application Lifecycle Management Environments: Past, Present and Future

 Page 14 of 121

restrictions on the methodology of carrying them out. A central requirement to an ALME is to

be flexible enough to support different development methodologies and guidelines. It should be

customizable and not force customers into a predefined order of stages. Building a lifecycle

support environment around fixed and rigid process will greatly limit its practicality. Every

organization has a process that is somewhat different and process rigidity will increase the

integration effort, which is already very high, as will be shown below.

2.1.2.2 Processes and activities

The ISO 12207 standard (International Standard Organization (ISO/IEC), 1995), (Singh, 1998)

defines and discusses in depth software lifecycle processes. It establishes a top-level architecture

of the life cycle. The building blocks of this architecture are processes and the relationships

between them. The life cycle processes are divided into three classes:

1. Primary. They are the key pieces of the life cycle.

2. Supporting. They support other processes in performing some specialized function.

3. Organizational.

This classification is shown in Figure 1. The processes are further subdivided into their activities

which in turn are built from their constituent tasks. Not all these processes are of an equal

interest to ALM. It focuses mostly on the primary processes and many of the supporting

processes, while leaving the organizational ones out of scope. Below is the discussion of the

processes and activities that ALM deals with.

1. Acquisition process. It defines the activities and tasks of the acquirer of the software

product or service. Usually these issues are considered out of scope of ALM and belong

more to the ERP world.

2. Supply Process. It defines the activities and tasks of the supplier of the software or

service. It begins from answering the acquirer’s request for proposal, continues with the

planning and execution of plans through the delivery of the service. Similarly to the

Acquisition process the Supply Process is usually considered to be out of the ALM scope.

Application Lifecycle Management Environments: Past, Present and Future

 Page 15 of 121

Life Cycle Process

Primary Process Supporting Process Organizational Process

 Acquisition

 Development

 Supply

 Operation

 Maintenance

 Documentation

 Configuration

management

 Quality assurance

 Verification

 Validation

 Joint review

 Audit

 Problem resolution

 Management

 Infrastructure

 Improvement

 Training

Figure 1. The Lifecycle Processes

Application Lifecycle Management Environments: Past, Present and Future

 Page 16 of 121

3. Development Process. It contains activities and tasks of the developer of software and

refers both to development of new software and modification of an existing software. The

standard defines the following activities of the Development Process:

 Process implementation

 System requirements analysis

 System design

 Software requirements analysis

 Software architectural design

 Software detailed design

 Software coding and testing

 Software integration

 Software qualification testing

 System integration

 System qualification testing

 Software installation

 Software acceptance support.

The order of the activities in the list does not imply the order of their execution. The activities and

their tasks can be used in any development model: the Waterfall, evolutionary, incremental and others

as well as in a combination of these models. The Development Process is the heart of the software

process and traditionally was the one that got the most attention. Its activities and tasks were the first

one supported by different CASE (Computer Aided Software Engineering) tools and environments

(Forte, 1991), (Fuggetta, 1993). Most ALM environments support many activities of the

Development Process and many of them are focusing only on this process.

4. Operation Process. It contains activities and tasks of the operator of a software system and

includes process implementation, operational testing, system operation and user support. This

process is supported by the ALMEs to a lesser degree while support for the user support activity

is more common than others.

5. Maintenance Process. It contains the activities and the tasks of the maintainer performed when a

system is modified. The reasons for the modification can be either errors, problems, or system

improvement. This process ensures that the modification, including system documentation, is

Application Lifecycle Management Environments: Past, Present and Future

 Page 17 of 121

done properly. The standard defines the following activities of this process: Process

implementation; Problem and modification analysis; Modification implementation; Maintenance

review/acceptance; Migration; and Software retirement. Adding the Modification Process’

support to an ALM environment can have a lot of value and a number of environments are

already providing this support.

The supporting processes contribute to the quality and success of the project by supporting other primary

or supporting process.

1. Documentation Process. The process defines the activities, which plan, design, develop, edit,

distribute and maintain those documents needed by all concerned such as managers, engineers

and users of the system (Singh, 1998). Adding support for the documentation process can give to

an ALM environment a lot of value and a number of ALME`s (such as DiME (Koenig, 2003) and

Orcanos (Orcanos)) are providing it. A most basic form of the documentation process support is

simple storage of the documents’ versions. A more sophisticated functionality is to keep track of

changes to these documents. One of the most advanced features of such support is automatic

documentation generation. It can provide a major improvement to the documentation ability of

organization.

2. Configuration Management Process. This process is employed to identify, define, and baseline

software items in a system; to control modifications and releases of the items; to record and report

the status of the items and modification requests; to ensure the completeness and correctness of

the items; and to control storage, handling and delivery of the items (Singh, 1998). A typical

example of such software items are source code files. The Configuration Management Process is

widely supported by ALM environments and it was one of the first processes that were facilitated

by CASE systems.

3. Quality Assurance Process. Provides means for the acquirer to assure the conformance of

products and services with their requirements. ALM environments can contribute to this goal by

establishing and facilitating the right software process.

4. Verification Process. This process allows evaluating products or services of other activities for

correctness and completeness. The verification can be applied to process, requirements, design,

code, integration, and documentation.

5. Validation Process. It tests whether the final system fulfills its intended use. The ALM

environments provide significant support for two of the quality control processes: verification and

Application Lifecycle Management Environments: Past, Present and Future

 Page 18 of 121

validation. The supported activities are: test planning and execution, test plan coverage, defect

tracking and reporting and others.

Other supporting processes: Joint Review, Audit, Problem Resolution Process are more procedural than

technical are usually out of the ALMEs’ support. However ALMEs can facilitate these processes by

establishing effective communication means.

2.1.3 Management

In the previous sections we have described the software applications and the processes and

activities that build the application lifecycle. These processes consist of numerous steps, operate

on large volumes of data and involve numerous interactions. The software process must be

managed in order to be effective. The processes should be guided; the data should be stored in a

way that facilitates its accessibility, consistency and redundancy; the activities should be

controlled and automated whenever possible. The technology that helps achieving these goals is

known as CASE (computer-aided software engineering) – software tool support for the software

engineering process (Sommerville, 2004).

The support that CASE tools and environments provide differs greatly and it depends on the

functionality the tool or environment provides and the processes it supports. In general, these

tools allow producing, storing, accessing, processing and searching different software process

related data; they automate software process activities and tasks and provide guidance and

facilitation for the processes themselves.

This brings us to the point of understanding of what exactly ALM is. Unfortunately, today there

is no single agreed definition of this term. The author reviewed a number of existing wordings

and created a unified definition of them. For each definition its main attributes were identified:

category, scope, goals, means, managed entities. Category defines where ALM belongs to: is it a

product category, activity, technology or a tool. Scope of ALM is the part of the supported

software process. Goals are what ALM tries to achieve. Means are the activities that lead ALM

to the goals. Managed entities are controlled and processed during the ALM activities.

Application Lifecycle Management Environments: Past, Present and Future

 Page 19 of 121

Carey Schwaber from Forrester defines ALM (Schwaber, 2006) as ―The coordination of

development life-cycle activities, including requirements, modeling, development, build, and

testing, through: 1)enforcement of processes that span these activities; 2)management of

relationships between development artifacts used or produced by these activities; and

3)reporting on progress of the development effort as a whole.‖ Forrester’s definition possesses

the following attributes:

 Category: both product category and discipline. In principle, it is possible to accomplish

the ALM goals without any tools.

 Scope: only part of the Development process from requirements analysis through testing.

 Goals: coordination of software development activities. In Forrester’s definition, the

ALM does not support specific activities, such as requirements analysis, but helps to

coordinate between them.

 Means: the three main ways of achieving the ALM goals for Forrester are process

enforcement, relationships management and reporting.

 Managed entities: process and artifacts relationships. ALM allows process defining and

supports enforcement process execution and synchronizes artifacts produced by software

activities.

Microsoft’s definition (Microsoft, 2007) of ALM is: ―ALM describes methods to manage

software development and IT initiatives by automating the process from end to end, and

integrating the information from the various steps…A key characteristic of ALM is that all the

project stakeholders (from the business and IT functions) share the same pool of up-to-date

information. This includes business sponsors, users, project managers, architects, developers,

testers, and system administrators. The typical activities supported by ALM include requirements

gathering, solutions modeling, visual design, coding, testing, deployment, and issue tracking.

ALM tools link together the artifacts that result from these activities.‖ This definition is quite

close to the Forrester’s one and its attributes are:

 Category: methodology, not product.

 Scope: supports the whole Development, Operation and Maintenance processes with a

focus on IT and business needs.

Application Lifecycle Management Environments: Past, Present and Future

 Page 20 of 121

 Goals: “manage software development and IT initiatives‖.

 Means: process automation, information integration and centralized management,

reporting.

 Managed entities: process and artifacts relationships. The artifacts themselves are not

necessarily managed by the ALM tools in Microsoft’s vision. This is the same as in the

Forrester’s definition.

Borland’s definition (Borland, 2007) of ALM is somewhat different. It defines ALM as a market

category populated with suites of products. These products ―address the challenge of increasing

the consistency and predictability of software delivery‖ and are team-based development

platforms. The Borland’s definition’s attributes are:

 Category: market category and tools.

 Scope: supports the Development process, supplies data for project management.

 Goals: consistent and predictable software delivery.

 Means: measurability (quality, progress and risk management and reporting), alignment

(business priorities management, requires traceability and data integration), discipline

(software process management and automation).

 Managed entities: while not stated explicitly, it seems that ALM platform in Borland’s

definition manages the same entities as in other definitions. In addition, Borland stresses

the metrics dimension of data processing.

Finally, IBM defines ALM is a ―market need for a suite of integrated tools to help teams manage

all of the assets in a software development project‖ (IBM, 2008). The IBM’s definition

attributes are:

 Category: integrated tools.

 Scope: from the project inception and portfolio management, though development to

operation and maintenance.

 Goals: ―streamlining a team’s ability to produce a release of software‖.

 Means: data integration, process governance, team cooperation and integration support.

 Managed entities: not specified.

Application Lifecycle Management Environments: Past, Present and Future

 Page 21 of 121

After reviewing a number of existing ALM definitions it seems that despite the wording

difference there is a shared common concept of what ALM is. The ALM unified definition

attributes are:

 Category: methodology and integrated tools supporting it.

 Scope: full application lifecycle, from inception through operation.

 Goals: making software delivery more efficient and predictable.

 Means: coordination and integration of data and artifacts produced by different software

development activities, defining, automating and supporting the processes and creating

visibility into the process state for all stakeholders.

 Managed entities: process and artifacts relationships.

In addition ALM should provide answers to business needs and facilitate distributed and

multiplatform development by geographically dispersed teams.

Figure 2. The scope of ALM (adopted from (IBM, 2008))

Application Lifecycle Management Environments: Past, Present and Future

 Page 22 of 121

2.1.4 Environments

ALM environments represent a category of CASE (computer-aided software engineering)

products. A large number of CASE products exist and they vary in many characteristics. In order

to facilitate understanding of CASE tools, their functionality and relationship to each other and

their role in the software process, one needs a classification. There are several ways to classify

CASE tools; each one of them looks at CASE tools from a different perspective.

Sommerville (Sommerville, 2004) proposes to focus on three perspectives that build together a

complete picture of CASE tools. These perspectives are:

1. A functional perspective. CASE tools are classified by the functionality they provide.

The functional classification divides the tools into planning, editing, configuration

management, change management, prototyping, language-processing, method-support,

program analysis, testing, debugging, documentation and other tools.

2. A process perspective. CASE tools are classified by process activities they support. The

tools are grouped into categories: specification, design, implementation, verification and

validation. The same functional tools can support more than one process and therefore

belong to many categories. For example, tools for text editing may be used throughout

the software process.

3. An integration perspective. CASE tools are classified by how they are organized into

integrated units. Wasserman (Wasserman, 1990) identified five kinds of integration:

a. Platform, which is supported by framework services.

b. Presentation, which is concerned with user interaction.

c. Data, concerned with data consistency regardless of how it is operated by tools.

d. Control, concerned with tools interoperability and communication.

e. Process, concerned with effective tools cooperation in support of software

process.

Fuggetta (Fuggetta, 1993) adds another dimension to the classification, which is a higher level

view on CASE products. He classifies the CASE systems by the breadth of support for the

software process they provide.

Application Lifecycle Management Environments: Past, Present and Future

 Page 23 of 121

 Tools support only specific tasks in the software process such as code compilation,

spelling check. They may be general purpose (e.g., word processor) or integrated into

workbenches.

 Workbenches support one or a few process activities such as specification, design. They

are sets of tools with some degree of integration. Very common are programming

workbenches that includes different tools that support programming: a text editor, a

compiler, a linker, a debugger.

 Environments support all or at least a substantial part of the software process. Usually

they include a number of integrated workbenches and tools.

In practice, the boundaries between theses classes are not so distinct. Tools may have built in

support for different activities. It may be sometimes hard to classify a specific CASE product

into one of these three categories. Nevertheless, the classification is still useful to assess the

extent of the process the product supports.

ALM systems belong to the third category in Fuggetta’s classification. They are integration of

workbenches that support different activities and processes in the IEEE standard terminology.

When building an ALM environments’ classification we will address all these perspectives: we

will inspect the functionality they provide, the parts of the software process they support, the

quality and kind of integration that exists between the parts of the environment.

2.2 History

2.2.1 Evolution of CASE

CASE tools evolution is driven by a number of factors.

 Technology influences it in two aspects: what CASE tools can do, and what they are

required to do. CASE tools role is to support the software process, so that the

requirements for them are dictated by the applications they need to support, and these

depend on technology progress. On the other hand, the technology defines what part of

the requirements CASE tools can implement. Sometimes the technology is not mature

enough to satisfy some existing need.

Application Lifecycle Management Environments: Past, Present and Future

 Page 24 of 121

 Software development methods are another factor of CASE tools progress. As

development methods progress they set new challenges to the support CASE tools need

to provide.

 Economical value should be taken into account as well. Software development is a

business and it gets more focus in the areas that deliver more value to the software

systems vendors.

 Incremental evolution - CASE tools develop incrementally, from simple to more

complex, getting into new areas of the software process after reaching needed maturity in

the existing ones.

First-generation CASE tools appeared in the 1970’s. Most business applications then were batch

transaction-processing systems. The first CASE tools were generally mainframe and text based

(Norman & Chen, 1992). There were also compilers and other programming supporting tools.

The development methods were mostly structured programming and structured design. These

methods required support for automation of gathering and analysis of the information they

produced. With the advent of graphical user interfaces integrated programming environments

that gave better support to structured design and analysis appeared. Among other features they

offered dataflow diagrams and structure charts creation and editing.

In the 80’s object oriented methods were developed to overcome the deficiencies of the

structured methods. More complex systems were created using them and they required more

from CASE tools. The next generation provided collections of tools that supported more

activities, like planning, analysis, design, programming, testing. Appearance of code generators

and fourth-generation languages have simplified activities related to coding itself so the

development bottleneck has shifted to requirements engineering, system planning and other so-

called ―upstream activities‖. Big volumes of information these tools operated required storing

this data in repositories. The first repositories were mere project dictionaries, but as technology

advanced and the system became larger the repositories grew to offer enterprise-wide support.

However they were limited to tools from the same vendor and to a certain methods of application

development.

Application Lifecycle Management Environments: Past, Present and Future

 Page 25 of 121

In the 80’s and beginning of the 90’s there was an expectation that the next step in CASE

evolution are integrated CASE environments that allow the management of activities through the

whole software process, including integration of tools developed by different vendors. A number

of initiatives focused on creating frameworks for such integrations emerged. The most important

of these initiatives, IPSE (Integrated Programming Support Environments) and PCTE (Portable

Common Tools Environment) got a lot of attention, were massively supported by different

software engineering institutions and discussed at many conferences. Ten years later it turned out

that all these initiatives are virtually dead. Most software vendors were developing standalone

tools and toolsets and investing massive efforts to achieve some integration between them.

The reasons for this failure to achieve a common integration platform are still to be studied. A

number of factors led to it. It seems that technology was not mature enough to provide such

large scale integrations. The proposed frameworks were based on the technologies (C language

interfaces, Ada) that were getting obsolete and inappropriate for large systems integrations. The

repositories were not mature enough to provide higher levels of abstractions required for

centralized management of activities from wide range of lifecycle activities. Process

immaturity is another reason for this failure in my opinion. Providing only a technological

platform for integration is not enough for developing useful integrated systems. The integration

needs to be much deeper then just the ability to transfer bytes in a common format between the

tools. This integration can be reached when the software process is understood enough and the

tools supporting different phases of it are mature themselves. The need for even faster

development that we have seen in 90’s resulted in new methods of software development, more

agile, more dependent on COTS (commercial off the shelf) components, more globally

distributed. These methods required software community and vendors to focus on creating

proper tools and environments for downstream software activities. These tools brought more

value to the software developers and were necessary building blocks for the development

lifecycle. So the questions of integration were postponed until the workbenches supporting

individual processes are mature enough.

Application Lifecycle Management Environments: Past, Present and Future

 Page 26 of 121

It seems that now the software development world has reached the state of readiness for

integrated application lifecycle environments. The necessary components are present. The

existing development processes are understood well enough and get the necessary support from

tools ceasing from being a bottleneck. The wide spread of SOA (service oriented architecture)

creates a proper platform for the integration – products are exposing their functionality in a form

of Web service interfaces. The database technologies have progressed a lot and can give the

necessary robustness, reliability, level of abstraction and power to manage large volumes of data

coming from different stages of the life cycle. Finally, there is a growing business need for an

effective and integrated solution that will manage the whole application life cycle. Software

development has become a large and important industry sector and to succeed in this business

executive management requires a holistic approach similar to what ERP provides for other

enterprise resources. The author thinks that all these factors together have sparked a new interest

in ALM which we experience today.

2.2.2 IPSE

A process for establishing requirements for the integrated software engineering environments

started in 1979 and as a result of it the ―Stoneman‖ report (Buxton, 1980) was published in 1980.

While focused on Ada Programming Support Environments (APSE), this document contained

ideas that were not Ada-specific and became a basis for many subsequent works on IPSE`s. This

report contained a vision of an integrated suite of tools supporting the whole lifecycle. The

architecture provided platform independence of user programs and software tools,

interoperability between independently developed tools and user interfaces built above old-

fashioned command line styles. The core idea of the architecture was a layered approach where

lower levels provided services to higher ones.

 Level 0 contained hardware and operating system

 Level 1 contained a kernel presenting a platform independent interface to its services

that included database, communications and run-time support functions.

 Level 2 contained a minimal set of tools supported by the kernel which is necessary and

sufficient for development and support. The tools included: editor, compiler, debugger,

configuration management tools and others.

Application Lifecycle Management Environments: Past, Present and Future

 Page 27 of 121

 Level 3 contained environments (APSE`s) that extended the minimal set to support

particular methodologies or applications.

This architecture inspired a number of efforts to build such integrated frameworks. Through the

next ten years until the early 90’s a large number of such efforts were undertaken both in Europe

and the US. Some of these efforts were heavily funded and lasted for many years. In the US the

most important such projects were APSE projects sponsored by the US Army and Navy at a total

cost of approximately 100 million dollars and software engineering environments (SEE`s) work

funded by the US government estimated at 75 million dollars. In Europe, an Alvey project

(Morgan, 1987) included a number of IPSE initiatives with total investment above 20 million

pounds and the Eureka Software Factory project received a total of about 400 million dollars

(Brown, 1993). Despite these investments and thousands of man-years put into these projects

after 10 years they failed to achieve their goal – widely accepted and implemented integrated

environments supporting all aspects of software development. More than that, even in the

organization that sponsored some of these projects (like DoD) they did not succeed to materialize

this vision.

Brown (Brown, 1993) gives a detailed and deep analysis of the achievements of IPSE`s and the

reasons for their failure. He lists 2 main contributions of the work on IPSE`s. The first one is

their role in the database technology revolution that took place in the 90’s. Initially IPSE projects

tried to utilize existing commercial database systems for their needs. However, it turned out that

they were not suitable for managing the large volumes of complex and interrelated data that

IPSE`s required. This led to massive research in the database world to support these IPSE’s

requirements. This research activity resulted in breakthrough in such areas as Object Oriented

Databases and catalyzed the progress in databases in general. The second major impact of IPSE`s

effort was on the software development process. In trying to support the software process as a

whole, the IPSE’s projects had significantly improved the understanding of what the software

process is, how to define, model, automate and control it.

Application Lifecycle Management Environments: Past, Present and Future

 Page 28 of 121

Brown also names the reasons that caused, according to him, the lack of practical success of

IPSE`s. He mentions four important causes of a very low adoption rate of IPSE`s in commercial

organizations.

1. Cost. IPSE`s are trying to solve very large and complex problems and thus are very large

and complex systems themselves. They often require dedicated and costly hardware, a

long and intensive implementation phase, massive employee training, hiring dedicated

IPSE support staff and high maintenance fees. Multiple tools comprising the IPSE

usually are updated periodically causing additional efforts to cope with the changes. The

organizational price is very high as well. In order to adopt the IPSE successfully the

organization very often needs to change the way it works and sometimes the

organizational structure, adding new positions needed to manage the changed process.

All these factors make shifting to IPSE-based process a risky endeavor that will result in

at least some initial decrease in productivity and higher operational expenses. In addition,

due to their size, complexity and lack of maturity the IPSE’s systems suffered from low

stability, slow performance and functional problems, which only added to the reluctance

to their adoption.

2. Lack of flexibility. Despite the declared goal of providing an open infrastructure that

supports easy integration and cooperation of independently developed tools, the real life

IPSE`s were a long way from that ideal. More commonly they were developed with a

fixed set of tools which allowed extension by referring to a small number of vendors.

They also were suited mostly for some specific type of development process. This made

them less appropriate for organization with a diverse range of projects using a number of

different tools coming from multiple sources.

3. Lack of standards. Quite ironically, IPSE`s, which should provide a common platform

for integration, in practice did not have a common understanding of what that platform

should be. Long debates took place about what parts of IPSE technology should be

standardized and what these standards should look like. New techniques and approaches

were constantly developed and compared. This situation is not attractive for commercial

organizations that require portability, compatibility and extended product life from a long

term strategic investment, which IPSE`s are.

Application Lifecycle Management Environments: Past, Present and Future

 Page 29 of 121

4. Little evidence of practical success. Organizations look for practical evidences that

IPSE`s really deliver what they promise. Unfortunately it turned out that the available

successful implementation data was quite hard to analyze. Even from the success stories

it was not clear that the IPSE`s were the factor that contributed the most to the

productivity gain or they were just part of a larger software process improvement.

Brown also reviews the basic mistakes that took the IPSE`s into the wrong direction. They

include the following issues.

1. Focusing on the technical issues instead of user needs. The original work on IPSE

technology put the main effort on defining and solving purely technical issues of large

and complex data sets management and creating generic open interfaces. At the same

time very little attention was put into leveraging this infrastructure to satisfy user needs.

This led to extremely large systems that provided no specific support for the functionality

that the user actually wanted.

2. Superficial understanding of tool integration. This issue is reviewed in depth in an

article by Brown and McDermid ―Learning from IPSE’s mistakes‖ (Brown & McDermid,

1992). The authors explain that in orders to reach the IPSE`s goals the technology should

address the following aspects of integration:

a. Interface integration. Different tools should provide consistent user interaction

experience. This eliminates the need for user training and ―context switch‖ during

using different IPSE tools.

b. Process integration. The environment should support consistent software

development methodology though the whole life cycle. This goes together with a

requirement to allow user to define the specific methodology to use, or at least

allow for this configuration and customization.

c. Tool integration. In Brown and McDermid terminology this refers only to the

ability of separate tools to share data.

d. Team integration. The environment should provide effective means for

teamwork, which includes team members’ communication, methods for work

sharing and separation.

Application Lifecycle Management Environments: Past, Present and Future

 Page 30 of 121

e. Management integration. The environment should help managers to stay

updated and to control development.

This classification is quite close to five types of tool integration defined by

Wasserman (Wasserman, 1990). Brown and McDermid claim that most IPSE`s and

especially IPSE infrastructures focus exclusively on tool integration and even there the

state of technology is unsatisfactory. This is partially explained by the fact that at the time

(in the early 90’s) the technology for group work facilitation and process enablement was

immature. But another not less important reason for this state of integration is an overly

mechanistic approach to it.

Tool integration has several levels that present different degrees of integration provided.

The lowest one, ―carrier‖, allows tools to pass raw binary data. There is no understanding

what is inside this data. The next level is ―lexical‖ – when tools share lexical conventions

about the data so they can recognize the parts that comprise the data stream and operate

on the parts they support. The next ―syntactic‖ level is sharing a set of data structures. An

example of such integration level is database schema. At the next, ―semantic‖ level tools

agree on the meaning of the data structure elements and operations on them. This

semantic integration level is the one that can allow automating of many development

tasks. The highest level is ―method‖ integration. It actually goes beyond the tool

integration in their definition and reaches the process integration. At this level tools share

the notion of development process and know each tool’s role in it. The tools interact

notifying each other about the operations performed to create a single consistent process

flow. The analysis of the existing IPSE`s revealed that they provided at most the syntactic

level of integration, while the real productivity gain and the functionality needed for user

application starts from the semantic integration level. Without them the practical value of

the integrated infrastructures is questionable.

3. Misunderstanding of the software process. IPSE’s goal is to support the development

process. They can’t replace it. If the organization does not have the right development

process in place trying to automate it will not bring any real value. On the other hand, an

organization lacking the right development process rarely feels a need to automate it at

Application Lifecycle Management Environments: Past, Present and Future

 Page 31 of 121

all. As Humphrey’s (Humphrey, 1989) research has shown, most software organizations

in the 80’s had a particularly immature software process. This means that both the

organizations were not ready for implementing an IPSE solution and the IPSE solutions

that existed had little understanding of the process they should support.

4. Overlooking the organizational and business aspects. A very large part of IPSE`s

projects completely ignored these aspects of IPSE adoption. As explained above, IPSE

system implementation incurs a large price on the business.

A different strategy could bring much bigger success to IPSE`s. This strategy should include:

a. Smaller projects that attack specific user problems, based on real world user

requirements and development processes

b. Evolutionary implementation. Allowing adopting the of the IPSE part by part,

trying to focus on practical issues instead of generic, but not practical solutions

c. Targeting real world development platforms. A lot of IPSE research was done

for Ada environment, even though it has only a small fraction of the development

market. At the same time many popular operatinng systems and environments got

little attention.

To summarize, the failure of the IPSE research to reach wide acceptance and practical results

is rooted in the gap between the researchers and the users. Concentrating the IPSE research

on the technological issues led to lack of attention in making this technology useful to the

development world. Trying to solve a very big and complex problem without properly

understanding its context led to an impractical solution that could not solve even a fraction of

it. Learning to crawl before trying to walk could bring the IPSEs to its goal.

2.2.3 PCTE

The acronym PCTE stands for Portable Common Tool Environment. A project to produce such

an environment was started in 1983 in Europe and its aim was to produce an interface

specification that would allow tools integration. The first such specification was published in

1986 (Ada Joint Program Office, United States Department of Defense, 1986). This specification

Application Lifecycle Management Environments: Past, Present and Future

 Page 32 of 121

was improved and developed over the years both in Europe and the US and finally resulted in an

international standard produced by the European Computers Manufacturing Association

(ECMA) in 1990 (European Computer Manufacturers Association, 1990). This standard was

called ECMA PCTE and was an abstract interface specification. Language bindings of this

specification to C and Ada were produced in 1991. It is very important to remember that PCTE

defines the interfaces, not their implementation or the complete environment populated by tools.

In fact, it does not devote any attention to the specific tool requirements and the issues of their

coordination and cooperation.

The PCTE defines interfaces necessary for data management, process control, security, network

management, auditing and accounting (Long & Morris, 1993). The PCTE data management

system is called Object Management System (OMS). Every data item in OMS is an object; an

object may have content, similarly to a file in an operation system. Objects may be either

primitive or composite, have attributes and type. Objects can be linked to other objects and links

are also typed and have attributes. The PCTE specifies ways to manipulate objects, links and

attributes. Types are defined and managed in Schema Definition Sets (SDS). SDS`s are stored in

the OMS and can be defined and manipulated using the PCTE interfaces. Despite its

terminology, the PCTE data model is an entity-relationship one and not object-oriented.

Another important aspect of the PCTE is process management. The PCTE specifies advanced

process management facilities allowing for start, stop, pause and resume processes as well as

query the process status. Processes are also objects in OMS. Processes can communicate using

pipes and message queues. PCTE specifies methods of performing atomic transaction activities

by processes so that the data integrity is achieved.

PCTE defines a sophisticated security model to satisfy the needs of defense systems. Both

discretionary and mandatory access controls are provided. PCTE supports a notification

mechanism allowing a process to be informed when some change occurs to an object in the

OMS. PCTE was designed for a network of workstations and specifies sophisticated networking

functions including data and schema replication.

Application Lifecycle Management Environments: Past, Present and Future

 Page 33 of 121

Despite a lot of efforts invested in PCTE and its standardization the practical success of PCTE

was quite limited. The most widely distributed PCTE implementation was Emeraude V12 that

was available on a number of Unix platforms. This system implemented an older PCTE 1.5

standard and has not released the product fully supporting the ECMA standard. A number of

commercial tools for this platform were created, but it seems that by the mid 90’s these activities

had stopped without reaching any significant practical results.

The reasons for the PCTE failure are to be discussed. A recent work by Lewis et al. (Lewis,

Morris, Simanta, & Wrage, 2008) calls PCTE an ―irrelevant standard‖ and claims that it failed

because too few software vendors supported it. While this is true, in order to learn from the

PCTE mistakes we need to look deeper and understand why the number of vendors was small. In

my opinion the very basic problem with PCTE was its impracticality. The efforts invested into

developing the standard were mostly focused on a theoretical question of providing a

comprehensive interface specification, mostly in some basic infrastructural areas (data

management, process management, security). While resulting in some good level of

understanding in these areas, this gave no insight in specifying the needed functionality for

building useful tools based on this infrastructure. The provided specification did not cope with

important integration aspects that are vital for a successful implementation. In general, it seemed

that the PCTE efforts tried to solve a problem that was rather too big at the time. It was too early

- technology-wise, process-wise and business-wise. As a result, the PCTE technology ended up

in defining solutions for a very basic parts of the overall life cycle support. The same issues were

addressed by other technologies, like object-oriented databases and operating systems, so the

relative advantage that the PCTE standard offered was not very significant. PCTE also could not

succeed because of the problematic implementation model, or rather absence of a practical one.

Implementing a PCTE solution posed a number of very challenging questions that had no good

answers. First, there had to be a reliable and stable PCTE framework implementation. Because of

the complexity and the instability of the specification, developing such a framework was a large

development project. Because its commercial value was unproven, not many development

organizations were going to invest in developing such a framework. PCTE required from tool

Application Lifecycle Management Environments: Past, Present and Future

 Page 34 of 121

vendors major efforts to conform to its interfaces. Migrating existing tools to the PCTE

framework was also a tedious task and not always possible without tool rewriting. This is not to

mention that there was a serious basic design flaw in the PCTE specification that made the PCTE

systems impractical in activities that required fast retrieval of data. Finally, the PCTE gave no

guidance on process integration and building an integrated software engineering environment. It

did not provide any specific support for the functionality required by the CASE tools and did not

define how to integrate different tools using its interfaces.

To summarize, the PCTE effort resulted in a better understanding of the requirements for

services needed for building an integrated software engineering environment. However the

PCTE specification did not address a number of crucial practical issues which caused a very little

market penetration of products based on the PCTE standard and eventual desertion of this

direction. Nowadays a lot of problems solved by the PCTE are addressed by other technologies:

databases, operating systems and development frameworks. One still can learn from the PCTE’s

achievements and mistakes and thus build better lifecycle support.

2.2.4 ALM 1.0

The term ALM 1.0 was introduced by Forrester analyst Carey Schwaber (Schwaber, 2006). It

refers to the attempts to reach the ALM goals as identified above by adopting the existing tools

and environments. This is not an easy task because most of these tools are functional silos that

support one kind of activity and were not built with tight integration in mind. Because of that the

ALM 1.0 approach has a number of inherent problems.

1. Fragile and superficial integrations. In order to tie together existing tools,

organizations establish tool-to-tool integrations using the APIs the tools expose and

repository synchronization mechanisms. However, in practice these integrations are

hard to set up, very difficult to maintain and they are expensive to upgrade when one

of the tools changes. Because of their point-to-point nature O(n
2
) integrations are

required for n tools. And, at the end, these integrations still are not deep and reliable

enough to meet business needs (Schwaber, 2006), (Shaw, 2007).

Application Lifecycle Management Environments: Past, Present and Future

 Page 35 of 121

2. Traceability and reporting problems. In order to create a project status report it is

necessary to collect and process data from a number of tools, each focusing on a

specific discipline: project management, test management, defect management,

requirements management. Each tool keeps this data in its internal format, which

makes data coordination and consolidation a hard problem (Shaw, 2007).

3. Redundant and inconsistent feature implementation. Each tool addresses common

problems such as team members’ cooperation and collaboration, reporting, security in

addition to the core functionality it provides. However, each tool achieves this in a

unique manner, which leaves practitioners with the same functionality provided by

many tools on an inconsistent basis. Another common practice by tool vendors is to

add features from adjacent disciplines, e.g., a test management tool vendor that decides

to add defect management to its product. The purpose of such addition is to increase

the tool’s market share, but it leads to the products stuffed with many features that are

less usable but require more integrations.

Figure 3. ALM 1.0 suites (adopted from (Schwaber, 2006))

Thus the ALM 1.0 approach provides only a very partial answer to the needs of the today’s

application lifecycle management. ALM 2.0 environments’ goal is to provide a comprehensive,

robust and scalable solution to these needs.

Application Lifecycle Management Environments: Past, Present and Future

 Page 36 of 121

3 ALME Classification Framework

This section presents a classification framework developed by the author. The framework will be

used for a comparative study of a number of existing ALM environments. The goal of this

framework is to provide a tool for assessing ALM environments, understanding their

characteristics, and discussing and comparing them.

3.1 Classification Aims and Principles

The framework should take into account a number of factors. First, it should provide us with a

clear understanding of how the ALME being studied serves the ALM goals, as identified above:

integration, process automation and reporting. In the case when a specific environment explicitly

sets goals that differ from the ones we have defined as common, the framework should capture

that.

The integration aspect should be covered in depth. The framework should consider both different

kinds of integration (platform, presentation, data, control, process) as defined by Wasserman

(Wasserman, 1990) and integration level, as defined by Brown and McDermid (Brown &

McDermid, 1992).

Also, the framework should reflect the breadth of support the ALME provides for the lifecycle

processes. The existing ALME`s target many, but not all lifecycle processes, and many of them

deliberately exclude some activities (e.g., portfolio management) from their scope.

The framework should consider the technical aspects of the ALME implementation: the

supported platforms and languages, data management and integration strategy, networking and

the distributed work support it provides, extensibility and architectural patterns it utilizes.

As shown above, the technical factors are not the only ones influencing the practical success of

the integrated system. The framework should capture the organizational and process aspects of

ALMEs and the support they offer in meeting such needs.

Application Lifecycle Management Environments: Past, Present and Future

 Page 37 of 121

Wherever possible, we should include available experiences from the studied system field usage.

This will allow assessing the differences between the advertised and actual capabilities,

strengths, deficiencies and quality of the product. Also practical experience will help us identify

new aspects to consider when studying (and developing) ALM environments, aspects we

otherwise may not foresee.

3.2 Related work

To the best of the author’s knowledge no classification framework for ALMEs currently exists.

However, there are two main groups of sources that can help build one. On the one hand, a

number of classification frameworks for software engineering environments exist, including the

ones for the integrated Software Engineering Environments (SEE`s). The most fundamental of

them is a ―Reference Model for Frameworks for Software Engineering Environments‖ (SEE

RM) (NIST/ECMA, 1993) produced jointly by NIST and ECMA. This work focuses on the SEE

frameworks, which are a part of SEE architecture along with tools. The difference between them

is that tools support the life cycle processes while the framework provides infrastructure

capabilities for the tools. The SEE frameworks simplify the tools’ construction and provide

facilities for integration between tools and for tools’ platform independence. The SEE RM sees

the SEE framework as a provider of a set of services. These services comprise the following

service groups:

 Object Management Services deal with all aspects of data management including

definition, storage, management and access of object entities and relationships between

them.

 Process Management Services support definition, enactment, management and

governance of lifecycle processes.

 Communication Services support other services communication, such as data sharing,

messaging and notifications.

 Operating System Services provide platform independent access to the services usually

exposed by the operating system.

Application Lifecycle Management Environments: Past, Present and Future

 Page 38 of 121

 User Interface Services deal with all aspects of interaction between user and tools.

 Policy Enforcement Services manage security and integrity.

 Framework Administration Services include means for incorporating new tools into an

environment, resource and license management.

These groups are somewhat parallel to Wasserman’s abovementioned classification (Wasserman,

1990).

The CASE tools classification frameworks, such as the ones by Fuggetta (Fuggetta, 1993) and

Sommerville (Sommerville, 2004) are another point of reference for building our ALME

classification framework. Another detailed tools classification is the one by Oliver (Oliver,

1994). This work proposes ten independent classifications, each one focusing on some aspect of

the classified system, such as inter-operability, extensibility, use, platforms, methodology and

others.

Another helpful resource in building the classifications are analysts’ reports on the ALM market

and tools. These reports (Schwaber, 2006), (Rotibi, 2006) provide a broad and deep review of the

current ALM market, discuss business, technical and organizational aspects and offer a lot of

useful insights on the issue.

3.3 Classification Framework

The purpose of this classification framework is to build a high-level broad picture of the studied

environments. Therefore it will not cover the lowest level details (as SEE RM does, for

example), but instead will give an overview of a wide spectrum of aspects. The framework will

cover two categories of aspects: technical and non-technical. The non technical aspects will

include the organizational and the business ones. This separation is sometimes not sharp, as

technical characteristics can have significant organizational and business impact. An example of

such tight connection can be vendor and platform support. Still, categorizing characteristics

according to the above distinction between technical and non-technical aspects adds to the clarity

of the classification.

Application Lifecycle Management Environments: Past, Present and Future

 Page 39 of 121

Figure 4. The developed ALME Classification Framework

ALME
Classification

Aspects

Technical
Aspects

Breadth of
lifecycle support

Integration

Role-based
views

Traceability and
reporting

Process
definition and

automation

Platforms
support

Extensibility and
openness

Distributed
teams support

Scalability

Security

Organizational
and Business

Aspects

Incremental
implementation

Interoperability

Breadth of
vendor support

Success stories

Application Lifecycle Management Environments: Past, Present and Future

 Page 40 of 121

3.3.1 Technical aspects

Breadth of lifecycle support. Analysts’ market research shows (Rotibi, 2006) that most, if not

all, existing ALM environments support only part of the full application life cycle. Some of them

focus on development and pre-deployment processes and some – on post deployment and

operations. Our framework will clearly identify the stages covered by the environment. Apart

from the stages that the system already supports directly, the framework should also capture the

stages the ALME is going to support in future or provide indirect support to (by interfacing with

other systems).

Integration. Integration is one of the most important aspects of the ALME classification. As one

of the goals of ALME is to provide a deep integration between tools and environments, our

framework should describe in details the depth of each integration type (presentation, data,

control, process). The framework will pay special attention to the data and process integration by

identifying the level of integration (lexical, syntactic, semantic) that the ALME achieves. Data

storing and synchronization strategy is one of the fundamental concepts of ALME architecture.

Major competing strategies of data synchronization are: single repository and repository-neutral

ALM platforms. The single repository approach (taken, for example, by IBM, Serena and MKS)

provides deeper, more powerful and robust data integration, while repository neutrality promises

greater interoperability, better cross-platform development support and, at least in theory, frees

the implementing organization from the need to migrate existing data.

Role-based views. ALM ties together different parts of the organization and the ALME should

provide each organization role with the view of the data that is relevant to its function.

Specifically, the ALME should provide business users, architects, IT and operations staff with

tools presenting consistent and up-to-date views of the data reflecting the product state. These

views should come in addition to the views it must provide to the development, quality assurance

and product management staff.

Traceability and reporting. These capabilities deliver a significant part of ALM systems’

business value and therefore our framework should reflect them. At the same time, traceability

Application Lifecycle Management Environments: Past, Present and Future

 Page 41 of 121

and reporting abilities heavily rely on the integration depth provided by the ALME and its

infrastructure. For this reason, a lack of some specific reporting ability has less influence on the

overall ALME quality, provided the ALME infrastructure allows for adding this feature.

Process definition and automation. Process automation is similar to reporting, in that it

delivers a significant part of the ALM value to organization and builds upon its infrastructure’s

integration capabilities. Specifically, the process integration level is a basis for the ALME

process automation. Still this aspect deserves its own place in the classification because of its

importance to the ALM goals. Governance abilities offered by the ALME also belong to this

category.

Platforms support. Today’s software development is characterized by a very heterogeneous and

diverse environment. Application development involves different development languages (e.g.,

C/C++/Java), development and deployment environments (e.g., .NET, J2EE) and different

operating systems (e.g., Windows, UNIX, embedded OSes, mainframe OSes). Sometimes all

these ingredients are part of the development process for the same application or application

suite. The more platforms an ALME can support, the more significant is its impact on the

organization.

Extensibility and openness. These characteristics are very important for the practical success of

an ALME. A single ALM platform cannot address all the needs of today’s highly diverse

development reality, and surely can’t address the needs of tomorrow. Openness and flexibility

are critical for an organization that follows the best-of-breed approach when choosing its

development tools and does not want to be locked into a single system or vendor. An ALME can

follow different paths to achieve openness: rich service interface exposure, usage of standard

data and interface formats (XML, web services), provision of connectors to other systems or

open source code.

Distributed teams support. Geographically distributed development and operations are very

common today. Usually an enterprise will have a number of development teams residing on

Application Lifecycle Management Environments: Past, Present and Future

 Page 42 of 121

different continents and separated by many time zones taking part in the same development

project. It will probably have also product management, business analysts and quality assurance

teams spread all over the globe. In addition to that, today’s technology brought new mobility

opportunities with GPRS, 3G data services and a VPN access to the network. An ALM platform

has to support such a distributed mode of work in an effective and seamless way.

Scalability. Every organization, regardless of its size, has its product lifecycle that has to be

managed. An ability to support organizations of different sizes and natures, from small coherent

teams to huge international enterprises is an important characteristic for a lifecycle management

system.

Security. Application lifecycle deals with first-class business information and therefore has to

conform to strict, reliable and adaptable security regulations.

3.3.2 Organizational and Business Aspects

The ALME’s overall quality and its chance to succeed depend by and large on how well the

ALME considers the organizational and business sides of ALM. This lesson must be learnt from

the history of IPSEs’ failure and from the success of ERP systems in today’s industry. The

author proposes to include in the framework the following characteristics to describe the non-

technical facets of an ALME.

Incremental implementation. ALM systems naturally consist of a number of subsystems that

support different functional and organizational areas. The ability to implement selected parts of

an ALM system provides great advantage to an organization that needs only some of the

functional capabilities the environment offers. For example, the organization may not be able or

may not want to change parts of the existing solution. Or it may prefer implementing the system

in a limited scope to assess its efficiency, quality and suitability to the organization’s needs. A

lack of this flexibility makes it very hard for an ALM system to gain a wide installation base.

Organizations now understand the big price such installations incur and are not willing to pay for

something that has not proven itself yet. Only the biggest vendors that supply complete lifecycle

Application Lifecycle Management Environments: Past, Present and Future

 Page 43 of 121

support for the organization will be able to have these all-or-nothing ALME implementations

installed.

Integration and interoperability with existing solutions and tools. Already mentioned in the

technical aspects, this characteristic has a critical organizational and business impact. Every

organization has some automated support for parts of the application lifecycle in place. Usually

the existing systems hold a lot of data that is vital for the organization’s business and are

integrated with its existing development process. An ALME that can integrate with the existing

tools has a good chance it will be tried and eventually used by the organization, while an

environment demanding replacement of the existing solution will inevitably face serious

opposition from inside the organization. Providing data migration answers this problem very

partially, as it does not address the process change impact.

Breadth of vendor support. In general, organizations don’t want to find themselves locked into

a solution provided and backed by a single vendor or a small group of vendors. This limits

greatly the organization’s ability to choose the right tools for its needs and impacts its business

freedom. Consequently, ALM environments that are based on standards with a wide vendor

support base will have better chances to succeed. This rule can be less important for the largest

vendors that usually provide the entire IT solution, but in this case the ALM support this solution

provides will probably bear little influence in overall considerations regarding the choice of a

specific vendor and its IT solution.

Success stories. This is a purely practical, but nevertheless an important characteristic. Before

going into a long and expensive ALM system implementation phase, the organization looks for

the experience of some other business that has gone through this process. This is a place for

practical evidences for the system’s real strengths and deficiencies, differences between the

marketed and actual capabilities and overall product quality.

Application Lifecycle Management Environments: Past, Present and Future

 Page 44 of 121

4 Case Studies of Current ALME Projects

In this chapter we will apply the developed ALME classification framework to a number of

current products. Among existing ALM solutions we have studied leading commercial products:

IBM’s Jazz Platform and Team Concert and Microsoft Visual Studio Team System. The author

has also applied the framework to a proprietary ALM support environment – Comverse’s DiME.

These systems are characterized by broad lifecycle support and enterprise-class maturity and

stability. They employ the most up-to-date technologies and architecture patterns. In addition,

they were designed as integrated ALM environments, unlike many other systems that are a

collection of separately designed tools. All these traits make the selected products good subjects

to study.

4.1 IBM Rational Jazz

IBM is one of the very few vendors that have solutions for practically every part of the

application lifecycle. Some of these solutions were built in-house and some came with

acquisitions. The most important of IBM’s ALM suites is the Rational product family that

contains multiple and diverse tools for development on different platforms, including the well

known ClearCase configuration management system (IBM Rational ClearCase V7.1) and a

ClearQuest (IBM Rational ClearQuest V7.1)product that facilitates change management and

defect tracking.

The most recent IBM’s ALM initiative is the development of the Jazz platform and a suite of

tools and solutions for application lifecycle management based on this platform. The first such

product is Rational Team Concert that provides a collaborative development environment for

small to medium sized teams, integrates source control, work item management and build

management capabilities. In addition it offers automated real-time reporting and process

governance. This section focuses on the Jazz platform and briefly covers the Team Concert suite.

Application Lifecycle Management Environments: Past, Present and Future

 Page 45 of 121

4.1.1 Design goals and architecture

Jazz was designed from the ground up to provide a platform for lifecycle support. Its explicit

design goals include:

 Deep task integration across the lifecycle

 Enriched team development support using the latest technologies for collaboration and

coordination

 Distributed teams support

 Solutions scalable from small teams to enterprises

 UI integration that meets today’s distributed development practice, providing both rich

user interface and light Web interface

 Extensibility and openness for other vendors.

In addition, Jazz leverages the Eclipse development platform that has a proven reputation of a

stable and extensible platform for development environments. In order to ensure practical

usefulness and quality of the system, the Jazz development team used Jazz for Jazz development

(self-hosting) (Lemieux, 2008).

Application Lifecycle Management Environments: Past, Present and Future

 Page 46 of 121

Figure 5. Jazz server and clients (from (IBM, 2008))

Jazz employs the client-server architecture model. A Jazz server hosts a data repository and

communicates with clients using Web services over HTTP. The Jazz clients can be of different

kinds including integrated IDE plugins, Web browsers, command line tools and Ant
1
 scripts.

Web access to Jazz client functionality allows working with the server without installing any

Jazz-specific software on the client machine.

Jazz employs modular and extensible architecture, which building blocks are called components.

A Jazz component supports some aspect of software lifecycle (for example build management).

Each component has a server part and a client part that communicate with each other and with

their peer components. The components are based on the Eclipse components technology (for

Java clients and servers). The components expose functionality that can be invoked by the

platform and other components.

1
 Ant – a popular Java-based build tool (Apache)

Application Lifecycle Management Environments: Past, Present and Future

 Page 47 of 121

The Jazz Server is a Java-based web application that currently can run on two application

servers: Apache Tomcat for small scale solutions and IBM WebSphere for medium and large

enterprises. The Jazz Server relies on the Eclipse’s OSGi
2
 runtime mechanism for components

management and intercommunications.

The Jazz platform consists of a kernel together with additional components, each responsible for

a separate aspect of software development lifecycle. The kernel contains two essential

components: Repository and Team Process.

Other components, that are responsible for specific lifecycle activities, build upon the facilities

provided by the kernel. The Repository is a central place storing the data of all components. It is

based on the data management capabilities of an underlying relational database. The Repository

provides to other components a high-level object-oriented access to the stored data, transaction

capabilities, auditing of the data items changes and a feed of data change events. The Jazz

Repository uses the following extensible and flexible data description mechanism. Components

describe their data as a high-level Eclipse Modeling Framework’s logical model (Ecore model).

2
 OSGi – an open-source standard specification for a Java-based service platform that can be managed remotely.

Eclipse Equinox is one of five certified OSGi implementations. (OSGi Alliance)

Figure 6.Jazz components (from (IBM, 2008))

Application Lifecycle Management Environments: Past, Present and Future

 Page 48 of 121

This logical model is automatically compiled into a storage model consisting of Java classes that

manage efficient storage and transfer of the data items as well as their in-memory representation.

The Repository supports a number of enterprise back-end relational databases that provide

solutions for repositories of different sizes. The Repository component will be discussed in more

details in the data integration subsection.

The second core kernel part, the Process component will be discussed in the process integration

subsection.

4.1.2 Jazz Platform Evaluation

In this section we will evaluate the Jazz platform according to our classification framework. Jazz

is not an ALM environment, but a platform for such environments, therefore not all parts of our

framework will be applicable.

4.1.2.1 Breadth of lifecycle support

Jazz does not directly support any specific part of the software development lifecycle, but

provides a platform for tools and components addressing the lifecycle activities. However, in its

current state Jazz and its components are mostly oriented towards the code construction part of

the lifecycle, such as defect and task management, build management and source control. The

existing planning support components are aimed at agile-style lightweight planning of

development projects. Another factor that strongly binds Jazz to the development related

activities is its Eclipse foundation. The primary user interface to Jazz server and clients is the

Eclipse integrated development environment. There is one component that goes beyond the small

cycle of development activities – the Jazz Reports. This component will be described later in the

chapter devoted to the reporting capabilities.

4.1.2.2 Integration

Jazz was built with an explicit goal of providing high level of integration to its components. Its

modular architecture, based on the time-proven model of Eclipse components and extension

points, offers a powerful and flexible mechanism for integration. Below we will go over each

integration type in Wasserman’s classification and see how well Jazz implements them.

Application Lifecycle Management Environments: Past, Present and Future

 Page 49 of 121

Platform integration. In Wasserman’s classification, platform integration is ―the set of system

services that provide network and operating systems transparency‖ (Wasserman, 1990). Platform

integration allows tools to function regardless of their physical distance and the underlying

hardware and software configuration. Jazz addresses this by using web services as its

communication interface between clients and server. Using this very popular modern technology

allows transparent integration of the clients running on different operating systems and separated

by thousands of kilometers. Still, the Jazz server and its components are written in Java and this

is the only technology acceptable for the server-side Jazz plugins. (It seems that the full potential

of the clients not written in Java language depends on the maturity of the Jazz REST
3
 Services

(Rivieres, 2007) technology, which is under development now (Jonston, 2008). Until Jazz REST

services are implemented, the Jazz client-server web services stay internal and can’t be accessed

directly, therefore there is a need to develop and maintain language-specific client libraries.)

Data integration. The Repository component is a central data hub of Jazz that provides data

management and integration services to all other components and their plugins. Each component

describes its data in a high level object modeling language of the Eclipse Modeling Framework

(EMF). The models are described in XMI (XML Metadata Interchange) and can be created and

edited by direct XML manipulation, importing from other modeling tools, such as Rational Rose

and by annotating Java interfaces with model properties. The Figure 7 illustrates a definition of a

simple class in UML, annotated Java and its XMI representation.

3
 REST – Representational State Transfer. REST is a software architecture approach for distributed systems, is

widely used in building Web Services-based API.

Application Lifecycle Management Environments: Past, Present and Future

 Page 50 of 121

Figure 7. An EMF model definition in UML, XMI and Java (adopted from (Eclipse, 2005))

This high level component’s object model is called a logical model. Its top-level objects are

called items. Items can have simple properties (e.g., integers, string) and also content properties

used to store bulk data (e.g., files). Items can refer to and contains other items. The platform

supports auditing and versioning of item’s state. Each Jazz Repository item has a universally

unique item id (UUID) and can be replicated to another repository keeping its identity.

The EMF engine generates a number of Java interfaces and classes for the defined data model.

The generated Java classes contain all necessary information for the framework to learn about

the items. This information guides Jazz to build the database tables and the items’ internal

representation allowing for efficient storage, search and serialization of the items. These

generated Java classes form a component’s storage model. This transformation of the logical

model into the storage one is automatically done by the engine.

The Repository provides a generic server-side API for items’ creation, fetching, updating and

deletion. A component can perform all these operation on the items it created. Another

/**

 * @model

 */

 public interface Book

 {

 /**

 * @model

 */

 String getTitle();

 /**

 * @model

 */

 int getPages();

 }

 <ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"

 name="library "nsURI="http:///library.ecore" nsPrefix="library">

 <eClassifiers xsi:type="ecore:EClass" name="Book">

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="title"

 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

 <eStructuralFeatures xsi:type="ecore:EAttribute" name="pages"

 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>

 </eClassifiers>

 </ecore:EPackage>

Application Lifecycle Management Environments: Past, Present and Future

 Page 51 of 121

component’s items can be only retrieved. If a component A needs to manipulate component B’s

items, it can do so only by using the API that the component B exposes.

The Repository provides transactional semantics for data manipulation and implements

algorithms for keeping data integrity during concurrent updates. In addition, it supports running

complex queries on items based on their properties using the object oriented EJB Query

Language (IBM, 2008).

To summarize, the Jazz Repository component provides a generic and powerful mechanism for

data management. It possesses a high level of data integration. Because the data items are

exposed to the components in a form of Java classes that combine data fields with the behavioral

methods we can classify the integration level to be a ―semantic‖ one, when data is associated

with the operations that can be performed on it. In addition, the underlying relational database

provides a robust and scalable foundation for the Repository. The single repository approach

frees Jazz from inter-repository synchronization problems and supplies a natural platform for

tools cooperation. At the same time this approach poses problems when it is necessary to connect

a tool or a system with its own data storage to a Jazz repository. The Jazz’ approach to this

problem are connectors that should synchronize between the repositories. Currently there are

two such connectors coming with Rational Team Concert – one for the ClearCase source control

system and another one for the ClearQuest task management system. They will be discussed

later.

Control integration. Jazz supports tool collaboration via a paradigm of events described below.

Components report about interesting changes using a server side API. Examples of such events

are build completion, source code item delivery, workspace change, work item status change and

many others. The underlying infrastructure backed by the Repository publishes an event feed in a

standard Atom or RSS format and this feed can be parsed by any standard reader, including Web

based ones. These events are called ChangeEvents and carry the following information

(Lainhart, 2008):

 eventItem – an unique identifier of the Jazz repository item associated with the event

Application Lifecycle Management Environments: Past, Present and Future

 Page 52 of 121

 eventTitle

 eventDescription

 eventAuthor – the user identity of the event creator

 eventTime

 eventCategory

 and more…

Components can query the change event feed using a standard query API by specifying

interesting event parameters.

The Rational Team Concert extends this basic notification mechanism and wraps it into an

extensible and generic framework for components’ event-based communication. This framework

(Pasero, 2008) defines and supports the following terms:

 Event

 Notifier – a mechanism to inform the user about a certain event

 Trigger – it combines a notifier with a family of events under certain condition.

In addition to the events and notifications, the components can invoke each other’s public API

methods. The invocation can be either Java based or Web service based. This direct components

invocation complements Jazz’ control integration capabilities with a powerful, scalable and

platform independent mechanism.

Presentation integration. The Eclipse integrated environment provides a natural presentation

integration platform for Jazz client side components. It supplies templates for such integration

and the available Jazz components are built targeting Eclipse as a primary client user interface.

Jazz components communicate their data to the user in two main Eclipse views: Team Central

and Team Artifact.

An alternative Jazz component user interface is a Web interface that can be accessed via any

Web browser and does not require any Jazz-specific software installation on the user machine.

Application Lifecycle Management Environments: Past, Present and Future

 Page 53 of 121

The Jazz Web UI is produced by components’ server-side plugins. The Jazz Server puts together

the output of different component’s and composes a web page that the user interacts with. The

resulting web pages are exploiting Ajax and REST web services to communicate with the server-

side components’ plugins. Jazz provides a development framework for developing both ends of

the Web UI.

To summarize, Jazz provides a very good level of presentation integration in both rich and web

user interface options.

Process integration. Process support is one of the central ideas in Jazz’ design. The Team

Process component is an obligatory part of the Jazz kernel, so its services are always available to

other components. Jazz’ process support is characterized by (IBM, 2008):

 Process-awareness. Process is explicitly designed into the platform and everything

happening during the lifecycle happens in the context of some process.

 Process-enablement. Components are governed by the enclosing process and their

operations are influenced by the rules and restrictions of this process.

 Persistency. Process and all its attributes are stored in the repository and are treated in

the same generic manner as other repository items.

 Flexibility. Process expresses an agreement about how a team’s work should be

organized. It can be as restrictive or as loose as the team agrees. Even inside the same

project a team can customize the process it inherits from its project area (see below).

Jazz represents all aspects of a software project by a project area. The project area is stored in

the repository and owns all development and maintenance artifacts. The members of the project

development teams are also represented in the repository as contributor items that belong to

some project area. Each contributor has a role or a number of roles assigned to him in that

project. Every project has an associated team process that can govern all artifacts, their

relationships and activities within this project (IBM, 2008). This governance is realized by

making Jazz components ―process-enabled‖. Components do not have any fixed or preferred

process type, but rather they allow the governing process to control their actions by:

Application Lifecycle Management Environments: Past, Present and Future

 Page 54 of 121

 Storing component’s configuration parameters in the governing process;

 Allowing the process to insert actions before and after the component’s operations. For

example, a source control component can allow the governing process to verify that the

delivered change is associated with some work item and abort the operation, if this is not

true;

 Reporting to the process about interesting events. The process can then take an

appropriate action upon these changes.

Process is specified in a declarative form (XML) with actions written in Java. Jazz provides

templates for a number of popular development methodologies, such as Agile and Scrum. The

project team can edit and customize the project process according to its needs.

Figure 8. Team Process Customization Dialog

To summarize, Jazz provides comprehensive and deep process support that is seamlessly

integrated into every aspect of the project lifecycle. The implemented mechanism is both

powerful and flexible and possesses high efficiency and ease of use.

Application Lifecycle Management Environments: Past, Present and Future

 Page 55 of 121

4.1.2.3 Role-based views

Jazz is a platform for building ALM tools and environments, but does not include any such tools.

Therefore, supplying a role-based views is not in Jazz’s scope. However, Jazz offers a necessary

infrastructure for building them. Each team member has a role and his/her permissions to

perform different actions are role-based. The roles and permissions are stored in the Repository

and the policy is enforced by the Process component.

4.1.2.4 Traceability and reporting

Jazz’ single repository architecture facilitates its reporting capabilities. All items and their

relationships are stored in a repository, which is built upon a relational database. The Repository

component’s query functionality allows data retrieval and lookup. The Process component takes

care of assuring the linkage between related items, such as source code changes, a work item

(e.g., a defect) and a build. A Jazz Team Reports components, which is a part of Rational Team

Concert builds upon these capabilities to provide a report engine. This will be discussed in the

Team Concert section.

4.1.2.5 Process definition and automation

The Process component discussed in the integration subsection above provides the process

automation capabilities.

4.1.2.6 Platforms support

Jazz’ natural development environment is Eclipse. Hence its primary programming platform is

Java/J2EE. However, Jazz is not limited to this platform only. Jazz can support development in

any language and the specific development environment integration should be done by the client

side components. While Rational Team Concert (the first available ALME based on Jazz) is built

upon Eclipse, a Jazz client for Microsoft’s Visual Studio (Lemieux, 2008) is being developed

now and will significantly broaden the potential Jazz audience. In addition, IBM is working on

integrating Jazz with mainframe environments, such as System I and System Z.

Application Lifecycle Management Environments: Past, Present and Future

 Page 56 of 121

4.1.2.7 Distributed teams support

One of Jazz’s design goals is supporting geographically distributed teams’ run-time

collaboration. The Jazz platform supports distributed development naturally by using web

services as its primary communication protocol. The repository data synchronization is provided

by the underlying relational database. The collaboration features offered by Jazz allow efficient

team members communication regardless of physical distance between them. A practical

evidence of Jazz distributed support quality is Jazz’s self-hosting: Jazz is being developed and

maintained by a geographically distributed team using Jazz.

4.1.2.8 Scalability

This work’s goal is assessing an ALME’s approach to scalability challenges without going into

detailed measurements. The scalability of the Jazz platform can be characterized by:

 An ability to hold and manage large data sets common for enterprise development;

 An ability to handle many concurrent users. Server responsiveness should stay within

acceptable limits when the number of users grows;

 Network load. The network traffic produced by Jazz client-server communication should

not flood the network bandwidth. At the same time, the network communication should

provide good response times over WAN.

Jazz addresses the problems related to managing very large data sets by relying on capabilities of

the underlying relational database. Jazz supports three database systems: Apache Derby, an open

source database suited for small data sets, IBM DB2 and Oracle – for large repositories. The Jazz

Repository completely encapsulates the underlying database from upper layers and all storage

models and APIs are independent of the chosen database.

Jazz depends upon the hosting application server in managing concurrent requests. Currently it

can be installed on two application servers: Apache Tomcat for small environments and IBM

WebSphere for large enterprises. Jazz presently supports up to 300 simultaneous users without

losing server responsiveness stability.

Application Lifecycle Management Environments: Past, Present and Future

 Page 57 of 121

According to the Jazz’ Team Wiki site (Lemieux, 2008), the Jazz developers set an explicit goal

of providing good client experience over WAN with slow request round-trip time. The site does

not provide network performance benchmarks.

4.1.2.9 Security

Jazz utilizes the hosting application server’s authentication mechanism for identity checking.

Once identified, the logged-in user is mapped to a representing contributor item and all user’s

actions can be checked by Jazz components for possessing enough permissions. Jazz can use one

of three identity repositories: a simple Apache Tomcat user database, an LDAP server or the

application server’s internal user management.

4.1.2.10 Incremental implementation

Jazz’ modular architecture makes it easy to install only the necessary components. The Jazz

server contains only essential kernel modules and an organization can add the required

application components. The Jazz server is currently distributed with the Rational Team Concert

suite that comes in 3 editions holding different component sets.

4.1.2.11 Integration and interoperability with existing solutions

Jazz can be integrated with other systems using either data import or data synchronization. If an

organization has some ALM supporting tool in place, it can either move to a corresponding Jazz

component completely, by importing the existing database into the Jazz repository, or use Jazz

connectors that will link items in the Jazz repository with the existing tool’s artifacts. Such

integration solutions come with the products built upon the Jazz platform. For example, a Jazz

Source Control component supports integration with Subversion, an open source version control

tool. The two integration options are: importing the Subversion repository or linking Jazz work

items to Subversion revisions with a help of a Subversion client for Eclipse. More integrations of

Rational Team Concert components will be described below.

Application Lifecycle Management Environments: Past, Present and Future

 Page 58 of 121

4.1.2.12 Breadth of vendor support

The Jazz platform is developed by IBM Rational. The first (and currently the only) product suite

built upon this platform is Rational Team Concert. A number of IBM business partners are

developing products and solutions that integrate with Jazz. They include Black Duck Software,

CAST Software, CM-Logic, iRise, Mainsoft, QSM, Ravenflow, SourceIQ, Surgient, VMLogix

and WebLayers. IBM is promoting these initiatives by offering to members of its IBM Rational

Ensemble program educational resources and services for developing Jazz-based technologies. A

number of academic institutions are conducting research projects based on Jazz. At the same

time there are no other large vendors working with or planning to support Jazz.

4.1.2.13 Success stories

Jazz became publicly available in the summer of 2008, and the first Team Concert products

based on Jazz appeared soon after. So it is too early for industrial Jazz deployment success

stories. However, Jazz was developed using Jazz internally and this can be seen as a first and a

significant practical success. The developers and management team report (Rich, 2008) about a

very positive experience from using Jazz internally and believe that the project’s success is due

to their first-hand experience as Jazz users. The importance of this self-hosting is not to be

ignored, as the Jazz development team represents a globally distributed large team working on an

enterprise project.

4.1.3 Rational Team Concert Evaluation

Rational Team Concert is an application lifecycle management suite based on the Jazz

technology platform. It extends the integration and collaboration capabilities of Jazz with

components supporting different aspects of software development such as planning,

configuration management, build management and reporting. Team Concert is the first and

currently the only commercial product using the Jazz platform.

4.1.3.1 Breadth of lifecycle support

Team Concert supports and integrates different aspects of the software development lifecycle.

Application Lifecycle Management Environments: Past, Present and Future

 Page 59 of 121

Figure 9. Rational Team Concert Components (adopted from (Rational Team Concert Capabilities))

Its capabilities include (Rational Team Concert Capabilities):

 Work item management. The work item is a basic building block used for task

management, work planning, defect tracking and workflow governance. Task work items

link together other Team Concert artifacts such as builds and change sets. Work items are

stored in the Repository and have a type, attributes and a state. Work items can be tagged,

shared with other team members and linked to other work items and artifacts. Work items

are customizable and new types of work items can be easily defined. Attachments, such

as screen captures and files, can be added to a work item. Team Concert implements an

advanced search mechanism that provides duplicate and similar work items search,

automatic work item type guessing and other productivity boosting features.

 Source control. The Team Concert’s Source Control component is a component-based

version control system that has strong support for parallel development. Every source file

change is part of a change set – an atomic transaction on a set of files. Change sets are

linked to work items. Teams and individual contributors share change sets via streams.

Application Lifecycle Management Environments: Past, Present and Future

 Page 60 of 121

Parallel development is supported at a number of levels. Developers can work with a

local workspace without sharing it with the team while having a full access to all

repository features. Work items isolate source code changes in a context of one task. A

number of developers can work on a work items isolated from other development.

Teams’ development is isolated by streams. Streams allow members of the team to share

their change sets without affecting other teams. Streams support hierarchy allowing code

sharing between teams when integration is required. The Source Control component is

fully integrated with defect tracking, builds and process automation.

 Agile planning. The Agile Planning component provides tools for development iteration

planning. It allows selecting tasks for the iteration and monitoring their progress and

developers’ work load. The Agile Planning component is highly integrated with the Work

Items and the Process components. However, it is not suitable for planning and tracking

large development project, but is rather oriented to iterative, agile-style development.

 Builds management. The Team Build component integrates builds with other

development artifacts, such as process, work items and change sets. The component

works with existing command line build scripts and tools (Ant, Maven and others).

Builds are linked with the change sets and work items they include. Builds can be

requested and scheduled, compared and tracked. The Build component provides

automatic reporting on builds characteristics such as failure rate and duration.

 Reporting. The Team Reports and Web Dashboards components provide visibility into

project health. They offer both real-time status and historical perspective on tasks,

defects, builds and source streams. This information is presented both in the rich client

Eclipse and web user interface. The components supply a large number of predefined

report templates suitable for tracking the status of projects of different types. The reports

and report templates can also be customized. Historical data is stored in a special

database, data warehouse, which is designed to store, query and discover trends in

aggregated data. The data warehouse is populated automatically from the data stored in

the repository. Dashboards provide a single place representing project overall status and

its different aspects (iterations progress, work items statistics, event log), in an easy to

understand and use web interface.

Application Lifecycle Management Environments: Past, Present and Future

 Page 61 of 121

 Interoperability. Two Connector components allow Team Concert to interoperate with

other Rational products. The ClearCase Connector preserves synchronization between a

Team Concert Source Control stream and a ClearCase stream. This allows Team Concert

users to work on a ClearCase stream. The operation is not transparent as it requires

explicit synchronization request to be issued, but it can be automatically scheduled thus

reducing user’s involvement. According to the latest news from IBM, it plans to move

ClearCase onto the Jazz platform. The ClearQuest Connector synchronizes between

ClearQuest records and Team Concert work items allowing teams to use both tools

simultaneously.

 Requirements management. Requirements Composer (in the beta stage of development

currently) is a new Team Concert member that brings in requirements definition and

management capabilities. It brings the functionality of the popular RequisitePro tool into

the integrated Jazz environment. Its abilities include multiple requirements sources

consolidation, use case development, user interface prototyping and many others. In

addition to that it is tightly integrated with the process and work items.

 Test management. Quality Manager (in the beta stage of development now) adds test

planning, execution and tracking capabilities. The tests are tightly integrated to

requirements and work items, such as defects.

To summarize, Rational Team Concert provides a rich and integrated set of tools for all major

development activities and is gradually extending into the adjacent areas of the lifecycle –

requirements and test management. It also can interoperate with a number of other popular

lifecycle management tools.

4.1.3.2 Integration

Team Concert inherits its integration capabilities from Jazz. All components work in a tightly

integrated manner sharing the data through the shared repository. This allows developers to

perform all lifecycle activities in a single integrated environment and all these activities are

interrelated and governed by a team-predefined process.

Application Lifecycle Management Environments: Past, Present and Future

 Page 62 of 121

One important Team Concert’s addition to the Jazz integration characteristics is the Open

Services for Lifecycle Collaboration initiative (Open Services for Lifecycle Collaboration). This

initiative’s goal is to allow collaboration of tools from different vendors without creating tool-to-

tool integrations. The initiative sees an ideal solution to this problem as a ―uniform architecture

and set of protocols that allow resources from loosely coupled tools to be integrated in a

consistent way‖. The resources are the lifecycle artifacts, such as defects, test definitions, source

code and others. The initiative proposes three fundamental principles of such solution:

 A universally unique and globally accessible resource address. Specifically, the Open

Services propose URL as such addressing mechanism.

 Semi-transparent XML-based resource format. Tools agree about common elements of

the resource format and can change their private elements format and meaning without

breaking other components.

 A common resource access protocol. The Open Services adopt RESTful web services for

this purpose. Discussion of these services is out of the scope of this work.

In addition to these principles, the Open Services initiative proposes a typical set of lifecycle

resources and their relationships. The agreement on these relationships is another essential

component of the independent tools collaboration. Many of the Team Concert components

already employ or are migrating to the Open Services architecture. For example, Rational

Requirements Composer interoperability is fully based on Jazz REST Services.

Application Lifecycle Management Environments: Past, Present and Future

 Page 63 of 121

Figure 10. Open Services Resources and Relationships (from (Typical Lifecycle Resources and

Relationships))

4.1.3.3 Role-based views

Team Concert inherits from Jazz a flexible built-in mechanism of roles and their permissions. All

users are assigned one or more roles in the project. Each role has a set of permissions to carry out

certain actions. This scheme controls user actions inside the project but does not restrict user’s

access to different areas of project data. The author could not find a way to define, for example,

that a user that has only a ―Builder‖ role is not allowed to access the project overall progress

view. Maybe, this is done on purpose – Jazz’s designers believe that sharing as much

information as possible is a positive thing. On the other hand, the Team Concert client interface

is highly customizable and a user can select the views he/she is interested in. For example, the

Application Lifecycle Management Environments: Past, Present and Future

 Page 64 of 121

Team Central Eclipse view is built from sections that include My Open Work Items, Event Log

and Team Load. Sections can be added, removed and further customized. Thus Team Concert

provides flexible and adjustable views, but does not enforce restrictions on the information

access. As for the view for the non-development part of organization, the Dashboards component

provides high-level and aggregated information about project.

4.1.3.4 Other technical aspects

The abovementioned Team Reports component provides powerful and flexible reporting

capabilities. The Reports component uses data warehouse for historical data storage and

processing. Its report engine is based on the Eclipse Business Intelligence and Reporting Tools.

The reports are created from templates and their data set is defined by the user-supplied

parameters. The reports can be presented in various user interfaces: rich client, web or integrated

into the Dashboards view.

Team Concert can be extended via two mechanisms – Jazz components and REST services. New

functionality can be tightly integrated into the Jazz platform by implementing a server plugin that

will run inside the Jazz Server and a client plugin that will provide the front-end user interface.

Such components are being developed by a number of IBM business partners that participate in

the Rational Ensemble program. The Team Concert Document Collaboration developed by

Mainsoft is the first Team Concert component created outside of IBM. The Open Services

approach suggests a platform for a resource-based loosely coupled tools collaboration. In the

long term this approach can allow an organization to have tools from different vendors working

together without being heavily dependent on each other. This direction looks very promising;

however its success depends on the number of other large vendors that will participate in the

initiative. So far the author could not find any evidences of other major players in the ALM

domain that support the Open Services initiative.

The process automation, platforms support, distributed teams support, scalability and security

aspects of Team Concert are the same as these of Jazz and were discussed above.

Application Lifecycle Management Environments: Past, Present and Future

 Page 65 of 121

4.1.3.5 Incremental implementation

Rational Team Concert is available in three different editions, but they mostly contain the same

functional components, and differ in the number of supported users. So an organization

interested in only some of the Team Concert components is still required to pay for the entire

packet.

4.1.3.6 Integration and interoperability with existing solutions

Team Concert presents a number of interoperability solutions for popular tools and systems. As

mentioned above, Team Concert (in its most expensive Standard edition) provides connectors for

ClearCase and ClearQuest. It can also link work items to revisions of a popular open-source

Subversion version control tool (in all editions). More integrations are being developed: already

mentioned Team Concert Client for Visual Studio and the Mainsoft’s SharePoint Document

Collaboration Component.

4.1.3.7 Breadth of vendor support

A number of IBM business partners listed above develop Jazz and Team Concert based systems

and extend them with additional components. As the same time, no other large independent

vendor has joined these small companies.

4.2 Microsoft’s VSTS

Visual Studio Team System (VSTS) is an integrated ALM solution from Microsoft. It comprises

tools suites that work collaboratively sharing a common data repository and guided by a common

process. VSTS provides impressively wide support for many life cycle aspects and is especially

strong in the code construction activities. The VSTS platform includes integration with the

Microsoft Office product suite, thus exposing its functionality to non-developer users, such as

project managers and business analysts. The product was released more than three years ago, it

has a wide user audience and a lot of VSTS implementation case studies are available. In this

section we will describe the VSTS’ relevant design and architecture details and will evaluate it

using our classification framework. VSTS and Jazz share a lot of common concepts in

Application Lifecycle Management Environments: Past, Present and Future

 Page 66 of 121

terminology, architectural patterns, supported functionality and extensibility techniques. Both

platforms employ client-server architecture and use web services for inter-component

communication. Both are mainly targeted at development activities and provide very similar sets

of features. Therefore this work will cover these common characteristics briefly as they were

described in more detail in the section devoted to Jazz.

4.2.1 Architecture

VSTS consists of a server and a suite of client product editions (Microsoft, 2009).

Figure 11. VSTS architecture (from (Microsoft, 2009))

Team Foundation Server (TFS) has two main functions: being a central hub of all VSTS data and

hosting all VSTS functional capabilities. Logically it consists of two tiers: a data tier that stores

all persistent data of all Team System tools and an application tier that hosts all TFS

functionality (version control, work item management, project management and others). Client

applications communicate with the application tier via web services. The application tier

accesses the data tier using database connections. The two tiers can reside either on the same

physical server or separately. The data tier consists of operational stores of all Team System

tools and a hybrid (relational and OLAP) data warehouse that is used for reporting. The

operational stores and the warehouse are MS SQL server databases.

Application Lifecycle Management Environments: Past, Present and Future

 Page 67 of 121

VSTS exposes its functionality to the user in a number of ways. First, most of this functionality

is available in the Visual Studio IDE. For project managers and other non technical project

members accessing the project data via the development environment is confusing and

overloaded with irrelevant technical details. A special simplified UI called Team Foundation

Client exposes access to such features as project progress monitoring and work items tracking. In

addition, VSTS exposes a Web access to its data via the SharePoint project portal. MS Office

applications can also access this data using the SharePoint integration. Finally, all application-

tier web services are public and custom client applications that access them directly can be

created.

The VSTS architecture allows outside tools to integrate into all levels of the system.

Figure 12. VSTS Architecture with an Integrated Extension (adopted from (Minium, 2006))

The Figure 12 represents a custom extension application integrated into VSTS. VSTS exposes a

set of integration services (a registration service, a linking service, an eventing service, a security

Application Lifecycle Management Environments: Past, Present and Future

 Page 68 of 121

service and a classification service) that allow full integration into the application tier. These

services will be covered in more detail later.

4.2.2 VSTS Evaluation

4.2.2.1 Breadth of lifecycle support

VSTS has evolved from the Visual Studio integrated development environment and hence

provides very strong and diverse support for development activities. The functionality that VSTS

offers to developers goes beyond the support provided by most other systems, both integrated

and standalone. The Team System Suite includes a number of client product editions each one

specializing on different aspects of the development and testing activities.

 VSTS Architecture Edition helps architects, operational managers and developers in

distributed systems design.

 VSTS Database Edition provides database administrators and developers with

instruments for database change management and testing.

 VSTS Development Edition contains powerful tools for developers. These include static

code analyzers, code coverage and performance profilers, code refactoring tools, tools for

insecure code identification and automated unit testing.

 VSTS Test Edition is a suite of tools for Web applications and Web services testing.

These tools allow testers to define, execute and manage tests. The support includes

load-test management.

All VSTS editions work in tight integration with the functionality provided by the application

tier. This functionality is the core of team collaboration, tying together all major activities around

the actual coding. These capabilities include:

 Version control – TFS exposes an industrial configuration management functionality

that is backed by MSSQL Server and provides source code version control and document

management.

Application Lifecycle Management Environments: Past, Present and Future

 Page 69 of 121

 Work items tracking – TFS provides functionality for managing work items, such as

defects, tasks and requirements. The work items are stored in XML format and can be

extended with new fields and attributes. New work item types can be easily added to the

system. Work items can be accessed and modified both from the Visual Studio IDE and

from MS Office applications (Excel and MS Project).

 Build management – TFS enriches the MSBuild engine with Team System integration

capabilities, such as automated testing and work items update. Builds results are stored in

the data tier and can be queried and analyzed.

 Reporting – TFS reporting capabilities build upon SQL Server Analysis Services and

SQL Server Reporting Services. The VSTS tools’ data is transformed by warehouse

adapters and is stored in the data warehouse SQL Server. The reporting engine provides

aggregated and cross-product reports, such as bug trends, test coverage and code churn.

Custom reports can be generated using third-party tools and MS Office applications.

 Project management – TFS binds together all data, tools and processes used in the

development lifecycle of a software application using a concept of a team project

(Microsoft, 2009). The team project isolates all artifacts relevant to the software

application under development. These artifacts include: work items (bugs, assignments

and requirements), code, test definitions and test execution results, metrics and

documentation. The team project may also include different policies (e.g., source control

permissions), team project reporting site and the team project portal (based on SharePoint

Services). The project’s process is governed by a project process template. The process

template contains definitions for project work items types, roles and permissions,

document templates and predefined reports. TFS supplies two predefined process

templates: one for Agile-style development and the second for a more formal

development process. More process templates are available from the third parties. An

organization can create its customized process template. The process support will be

discussed in more details later, in the integration subsection. The team project allows

cross-tool reporting on a single project, as it naturally isolates the project’s artifacts. The

team project definitions and data can be accessed via a Team Explorer view window of

Application Lifecycle Management Environments: Past, Present and Future

 Page 70 of 121

Visual Studio and via Team System Web Access. The project SharePoint portal provides

access to the project documents, document templates and health reports.

 Extensibility – TFS builds upon a set of tool integration services. These services are

called Shared Services and are used by outside tools to extend TFS and fully integrate

into the TFS environment. The Shared Services will be described in more details later.

4.2.2.2 Integration

Platform integration. VSTS provides platform integration by means of its Web services API to

the application tier. These Web services allow custom tools and products to use the functionality

of Team Foundation Server regardless of the underlying hardware and software environment. A

number of commercial products exploit this mechanism. Teamprise Client Suite (Teamprize,

2008) allows developers to use all TFS features from Eclipse and from a number of other IDEs

(JBoss, Adobe Flex Builder, Rational Application Developer). It allows accessing the TFS

services from non-Windows operating systems, including Linux and Mac OS X. The Teamprise

product itself is written in Java, which emphasizes the excellent platform integration capabilities

of VSTS.

Data integration. The Linking Service, which is a part of Team Foundation Core Services,

provides the data integration facilities to VSTS components. It allows separately designed tools

to link their artifacts without having a common database. For example, in VSTS 2005 the work

items tracking tool and the version control tool use this service to link work items to source

control artifacts.

VSTS’ basic data entity is the artifact. Tools are artifact providers. An artifact provider registers

the artifacts types it offers and must implement a set of interfaces that allow other tools to read

those artifacts and refer to them. Each artifact has a unique URI that is used by the linking

service to address it. Figure 13 represents the VSTS artifact URI format.

Application Lifecycle Management Environments: Past, Present and Future

 Page 71 of 121

Figure 13. VSTS URI Format (from (Microsoft, 2009))

The artifact provider also registers the ILinkingProvider Web service interface that implements a

GetArtifacts method. This method is used to retrieve artifacts of the types this provider owns.

The provider must raise events when its artifacts change.

Artifacts are connected to each other by links. During the link type registration the link hosting

tool tells the system the referring and referred artifact types and the inverse link type. The tools

that refer to other tools’ artifacts are known as artifact consumers. An artifact consumer must

implement the ILinkingConsumer interface which has a single GetReferencingArtifacts

method. The consumer must also respond to ArtifactChanged events updating the links it hosts.

This very generic mechanism allows artifact providers and consumers to maintain the linkage

between their artifacts without knowing anything about each other. Thus VSTS employs the

repository-neutral paradigm, where each tool is responsible for managing its data, and the data

synchronization relies on the tools’ conformance to the defined interfaces and conventions. This

system behavior is called loose coupling. VSTS also supports tight coupling when the artifact

consumer links to the artifacts using some knowledge about specific APIs and implementation

details of the artifact provider. This linking gives more control, but comes at the expense of

strong dependency between the components. To summarize, VSTS’ data integration mechanism

is both flexible and powerful, and allows tools to integrate with each other without creating

vstfs:///<tooltype>/<artifacttype>/<tool-specific id>

 Vstfs A constant that may be used as a custom protocol. In version 1.0, it is converted to a URL
and made widely available that way.

 <tooltype> Identifies the tool interface supported by the tool responsible for maintaining and

answering questions about the artifact—in other words, the artifact provider. This enables a calling
tool (one holding a link) to decide how to handle an artifact based on the interface offered by the
tool. For example: vsbug, vsversionstore, and so on. Tooltype identifies the API and is specified by
the tool.

 <artifactttype> The type of artifact that the tool maintains. A tool only supplies an artifact type
if the type is immutable. Artifact types are registered by the tool at installation time.

 <tool-specific id> An immutable reference to the artifact instance. The tool creates the tool-
specific ID and maintains it.

Examples

 A URI pointing to a file stored in source control.

vstfs:///vsversionstore/file/b4e3216

 A URI pointing to requirement record in work item tracking.

vstfs:///vstfArtifact/vsworkitems/req/345

Application Lifecycle Management Environments: Past, Present and Future

 Page 72 of 121

brittle interdependencies. Its integration level is clearly semantic, as Web service interfaces

associate functionality with data types.

Control integration. The Team System’s Eventing Service serves as the main control

integration mechanism. VSTS implements a reliable publish-subscribe infrastructure that allows

tools to register event types they publish. Tools, services and users subscribe to the interesting

events and get notified either by e-mail (users) or by web services notifications. Event types are

described in XML Schema Definition. When subscribing to events notification, the event

consumer can specify a filter expression. VSTS supports a powerful filtering specification that

uses the Visual Studio Event Filtering Language modeled after SQL expressions. In addition to

events, tools and services can directly access other tools’ object model (the abovementioned tight

coupling). Events publishing and subscription can be done using Web services, thus providing

platform independence.

Presentation integration.

The main VSTS

components’ user interface

is the Visual Studio

integrated development

environment (IDE). The

Team System tools use the

IDE’s integration platform

in order to get access to all

visual components of the

environment and to

integrate into control and

navigation elements of the

IDE, such as menus, toolbars and views.

Figure 14. Visual Studio Extensibility (from (Microsoft, 2009))

Application Lifecycle Management Environments: Past, Present and Future

 Page 73 of 121

The Visual Studio IDE hosts software components in form of VSPackages. VSPackages can

access all IDE’s UI via programmable COM and .NET interfaces. The packages expose services

to the environment and other packages and use services provided by them. A Team Explorer

view is a focal presentation point of all Team System’s projects and their data: work items,

builds, documents and other artifacts. The Team Explorer can be extended by writing custom

plug-ins that provide additional functionality.

Process integration. The process template is the main instrument of VSTS process support. The

process template defines process-related aspects for each individual tool and supplies process

guidance materials. The process template is used by VSTS in conjunction with tool-specific

Project Creation Wizard plug-ins. These plug-ins (whose names and interdependencies are

specified in the process template) are invoked during project creation. Each plug-in sets up its

data types and other artifacts according to the template. For example, the Version Control plug-in

sets up permissions for operations such as Read, Checkin and Label for different user roles

(Contributor, Administrator and Builder). These roles and their project-level permissions are also

part of the process template. The XML snippet below represents a part from the permissions

settings of the Agile process template. It contains the permissions given to the members of the

Contributors group on different types of entities (e.g., project).

<group name="Contributors" description="Members of this group can add, modify, and

delete items within the team project.">

<permissions>

<permission name="GENERIC_READ" class="PROJECT" allow="true" />

<permission name="PUBLISH_TEST_RESULTS" class="PROJECT" allow="true" />

<permission name="GENERIC_READ" class="CSS_NODE" allow="true" />

<permission name="WORK_ITEM_READ" class="CSS_NODE" allow="true" />

<permission name="WORK_ITEM_WRITE" class="CSS_NODE" allow="true" />

<permission name="START_BUILD" class="PROJECT" allow="true" />

</permissions>

</group>

Figure 15. Permissions settings of the Agile process template

Application Lifecycle Management Environments: Past, Present and Future

 Page 74 of 121

The template also contains a Sharepoint section. The template’s Sharepoint section contains a lot

of descriptive material that covers in depth all aspects of the process. It also contains numerous

document templates, sample project management materials (MS Project’s project plan, a project

checklist, test development plan), and other process guidance documents. The project template

contains many useful reports and work items queries.

One of the central pieces of the process template is the working items description. It contains

definitions of the typical work item types used in the described process. The work item

description contains:

 Fields, their names, types, description and value ranges

 States and state transitions. State transitions include:

o The original and target states

o The transition’s reason

o Changes to the fields that result from the transition

o Actions that accompany the transition.

The actions are described as .NET managed methods that should be executed when the transition

takes place.

VSTS’ process integration support is mostly descriptive and static. It sets up the scene for the

process implementation and supplies the team with all necessary templates and explanations.

However the template’s influence on the run-time system behavior is quite limited. The only

place the process is automatically enforced is the work items actions. It seems that compared to

Jazz, the process awareness of the VSTS components is low.

4.2.2.3 Role-based views

VSTS support for role-based views is both rich and powerful. This support has two aspects:

permissions and views. The permissions model of VSTS is based on a discretionary access

control (DAC) to the parts of data and functionality for individual users, user roles and groups.

The project’s process template defines groups of users for the project and sets the high-level

permissions for each group. For example, it can grant members of the Readers group the

Application Lifecycle Management Environments: Past, Present and Future

 Page 75 of 121

WORK_ITEM_READ access, and provide the member of the Contributors group with the

WORK_ITEM_WRITE and START_BUILD permissions. The VSTS tools can further specify

permissions on specific actions and operations. This is also a part of the project template. Project

administrators can set users permissions on a project basis or on a server basis.

VSTS provides a number of product editions targeted at specific VSTS user audiences. The

Architecture Edition supplies architects and operations managers with a suite of tools for design

and validation of service-oriented solutions. The Database Edition contains advanced tools for

database professionals. The Test Edition provides a suite of testing tools. All these editions are

fully integrated with the common core functionality of TFS, such as work items and version

control. These specialized editions provide the targeted practitioners with the relevant tools while

keeping them in tight collaboration with the rest of the team.

In addition, VSTS provides plug-ins to Microsoft Project and Microsoft Excel that allow project

managers to access TFS’s work items management capabilities through these tools, thus hiding

the complexity and the irrelevant features of the IDE. Finally, VSTS 2008 provides a standalone

rich client application, Team Explorer (called Team Foundation Client in earlier versions), that

exposes the TFS services outside of the Visual Studio IDE. Team Explorer enables users of other

development environments to enter the integrated lifecycle supported by the TFS.

4.2.2.4 Traceability and reporting

Team Foundation Server provides the reporting capabilities based upon SQL Analysis Services.

Each TFS component (version control, work items tracking, etc.) keeps its data in a separate

relational database. In order to ensure efficient data querying VSTS maintains a specially

designed data warehouse that combines a relational database and an Online Analytical

Processing (OLAP) cube. The components’ data is pulled from the tool’s database, aggregated

and then placed into the warehouse. The reports are generated from templates. Each process

template contains a number of predefined report templates. New reports can be created by

modifying the existing ones, using filters on existing reports or with Microsoft Excel and Report

Server.

Application Lifecycle Management Environments: Past, Present and Future

 Page 76 of 121

The next version of the VSTS will contain requirements management functionality. This new

feature will include requirements traceability.

4.2.2.5 Process definition and automation

VSTS’ process automation support was described earlier in the Integration subsection. In short, it

seems that the process automation is not integrated well enough into the VSTS design. The

project process template sets up an environment for the process, but these settings have a mainly

static and descriptive nature. The runtime behavior of only some components is governed by the

process, and there is no single and standard way to make components process-aware and

process-enabled.

On the other hand, the project templates mechanism together with the VSTS extensibility

features can provide a platform for further lifecycle automation. One such solution is APPRISE

(Adaptive Project and Process Regulation and Information System for Enterprise) developed and

successfully deployed by Hewlett-Packard (Microsoft, 2005).

4.2.2.6 Platforms support

VSTS’ primary server and client operating environment is Microsoft Windows. VSTS is the

most popular IDE for Windows applications in different programming languages and

frameworks (.NET, ASP and others). At the same time the Web Services interface to the VSTS

application tier makes it possible to use VSTS for development in other development and

runtime environments, and even other client operating systems. A large number of commercial

products leverage this technology to bring the functionality of VSTS to UNIX, Linux, Mac OS,

Mainframe operating systems as well as Java/J2EE and embedded systems application

development (Microsoft, 2008).

4.2.2.7 Extensibility and openness

As shown above, VSTS can be extended in each of its three tiers: data, application and client.

Extending VSTS in the client tier is achieved by using the Visual Studio Integration Package

Application Lifecycle Management Environments: Past, Present and Future

 Page 77 of 121

technology. The client tier extension can access the object model of all components of the VSTS

application tier and becomes a part of the integrated environment. The application tier can be

extended using the integration Web services. This approach allows integrating into VSTS

components written in other languages and running on other operating systems.

The cornerstone of the VSTS

extensibility is the Registration

Service (Meier, Taylor,

Bansode, Mackman, & Jones,

2007). It provides a central

database of all services’

metadata. Services can discover

each other using this database.

The Registration Service

supports loose coupling for both

client and server components. A

tool enlists itself into the

registration database using an XML file that describes the tool’s attributes, the services the tool

exposes and the artifacts it hosts. Using a simple XML format and a set of standard conventions

tools can communicate without being bound to any specific implementation language, runtime

platform or even HTTP protocol implementation. Figure 16 represents an extract from a sample

tool’s registration XML that describes the tool, its linking provider service and its artifacts.

While exposing these powerful extensibility features, VSTS does not open its source code or

internal interfaces. The Web services of the application tier components (e.g., Version Control

Web service and Work Item Tracking Web service) are not documented and are not encouraged

to program against. Instead, the third-party integrators are provided with a rich managed object

model that exposes access to these services in the client tier.

Figure 16. Sample tool registration data

Application Lifecycle Management Environments: Past, Present and Future

 Page 78 of 121

4.2.2.8 Distributed teams support

The Web services interface to the VSTS application tier makes the location of TFS transparent to

the clients. Thus VSTS naturally supports distributed development. In addition, TFS includes a

special architectural component, called Team Foundation Server Proxy, which manages

downloads and file caching at the remote site. The TFS proxy significantly reduces bandwidth

usage and improves the performance of remote operations, while staying transparent to the

clients.

Figure 17. Accessing TFS through a reverse proxy (from (Meier, Taylor, Bansode, Mackman, & Jones, 2007))

It is possible to configure TFS to use HTTPS and VPN connections for remote users. VSTS also

allows Internet-based users to authenticate using HTTP basic authentication and connect to TFS

even without VPN. Still, there are important questions in the distributed development support

that VSTS has not solved yet. For instance, there is no good solution for synchronizing two TFS

repositories.

4.2.2.9 Scalability

TFS three-tier architecture allows it to scale very well. The data-tier backed by MS SQL Server

repositories can hold very large data sets. The Web server’s application-tier manages multiple

user requests. VSTS is a quite mature product and a number of large enterprise VSTS

Application Lifecycle Management Environments: Past, Present and Future

 Page 79 of 121

installations exist, including the Microsoft-internal TFS that serves the VSTS development (this

process is called ―dogfooding‖ at Microsoft). These installations demonstrate VSTS scalability.

The TFS development team periodically conducts scalability tests of the product and publishes

the hardware recommendations for different team sizes. The tests’ ultimate goal is to find a

configuration that can serve requests without losing responsiveness. The definition of

―responsiveness‖ in these tests is a little vague, as it does not specify a concrete round-trip time.

Instead, the team looks at the graph representing the dependency of the response time from the

server load. The point of the graph where the response time starts growing faster then the load is

called ―the knee‖. The tests’ goal is finding the configuration that will serve the specified team

without reaching the ―knee‖ and not going above 80-85% CPU utilization. The server load is

modeled after the load patterns of the internal ―dogfood‖ DevDif TFS server that has been

actively used and monitored for a number of years. Below are the latest hardware

recommendations for the TFS hardware configurations. They illustrate the scale abilities of TFS.

The data set of the largest load tested configuration included 10,000,000 files, 250,000 work

items, and its average workspace size was about 20,000 items.

Probably the best practical example of TFS scalability is the internal ―dogfood‖ implementation.

According to the latest data presented at the TechEd 2008 (Saad, 2008), there are over fourteen

thousands active users of TFS in Microsoft, working on more than forty million files and more

than three million work items. The total data size of the TFS servers inside Microsoft is over

seven terabytes.

4.2.2.10 Security

VSTS and TFS have a strong security model in place. This security model has three components:

topology, authentication and authorization. Topology deals with servers’ deployment and

network protocols between the tiers. Authentication verifies the credentials of a user or a

process. VSTS employs Windows integrated authentication. Authorization checks the user’s

permissions to carry out the requested action. TFS authorization mechanism makes use of TFS

Application Lifecycle Management Environments: Past, Present and Future

 Page 80 of 121

users and groups as well as Active Directory users and groups. The security permissions can be

controlled on a per-project basis or a server-wide basis and can be further refined by individual

tools (version control permissions and work items permissions).

4.2.2.11 Incremental implementation

VSTS comes in a number of editions, but they contain mostly the same TFS features and differ

in the specific development activities toolset. This forces the organization to purchase all

components of the TFS regardless of its actual needs. A number of VSTS users complain about

this lack of the possibility to adopt VSTS incrementally (the author has found a number of such

questions and requests on the Internet). The ―Team Development with Visual Studio Team

Foundation Server‖ book also called ―TFS Guide‖ (Meier, Taylor, Mackman, Bansode, & Jones,

2008), which contains patterns and practices of VSTS adoption, was published recently.

However, the author could not find there clear instructions for gradual adoption process as well.

At the same time, the process of gradual transition to TFS has happened inside Microsoft itself.

Different Microsoft’s divisions have adopted VSTS internally (Saad, 2008). The Developer

division has pioneered this adoption in 2005 with a limited set of functionality and by 2008 the

entire division was using all TFS features. The Windows division started in 2007 to use the

planning features and is going to migrate to TFS-based bug tracking. During this transition the

development organization is actively using the migration tools and mirroring solutions that

synchronize VSTS tools with their legacy counterpart systems. These mirroring and

synchronization tools (available in VS2008 and VS2010) will be described in the next section.

To summarize, while there is no option for an organization to purchase only the parts of VSTS it

is interested in, a phased or partial migration to VSTS is possible. However, there is some lack of

materials describing this transition process.

4.2.2.12 Integration and interoperability with existing solutions

VSTS’ Migration Toolkit (TFS Migration and Synchronization Toolkit, 2008) provides means

for interoperability with other ALM systems and for migration from other systems to VSTS. This

Application Lifecycle Management Environments: Past, Present and Future

 Page 81 of 121

toolkit is available as a shared open source. It allows both replacement of other version control

and work items tracking systems with TFS and bidirectional synchronization between TFS and

these systems. Other solutions include Microsoft’s tools for migration from Rational ClearCase,

ClearQuest and Microsoft Visual SourceSafe. Finally, a number of third-party companies, such

as Notion Solutions, Accentient and Persistent Systems offer services for data import from

existing defect tracking, help desk and project management systems into Team Foundation

Server. HP has developed a Team Foundation Server Bug Item Synchronizer that maintains HP

Quality Center bugs synchronized with TFS work items.

These tools were successfully used by a number of TFS customers. One such example is

Microsoft’s development division that was mirroring the existing defect tracking and source

control systems for about two years prior to completing the transition to TFS.

4.2.2.13 Breadth of vendor support

There are a number of products that integrate with VSTS or extend it. As mentioned above, a

significant number of smaller vendors exploit VSTS extensibility mechanisms to deliver

TFS-based solutions to other operating systems, including mainframe, Linux and real time

operating systems. Another important sector of third-party solutions is synchronization tools. A

number of large software vendors, such as HP and IBM provide products for bidirectional

synchronization with TFS.

4.2.2.14 Success stories

VSTS is publicly available for a number of years and has a wide installation base. The Microsoft

Web site publishes about 120 case studies of successful VSTS deployments. These case studies

cover customers from a wide spectrum of industries (from aerospace to grocery) and numerous

countries (from New Zealand to Russia) and span the period of the last three years, starting at

early October 2005. But the most impressive success story of VSTS implementation is its usage

by Microsoft. By the end of 2008 most of Microsoft development organization and its internal IT

organization use VSTS. The VSTS and the Developer divisions use Team System for all ALM

activities it supports. The Office, the Windows and the SQL divisions use some of the VSTS

Application Lifecycle Management Environments: Past, Present and Future

 Page 82 of 121

functionality and are planning to expand its usage. With more than 14,000 users, this is by far the

most massive deployment of the VSTS. According to Stephanie Saad (Saad, 2008), the system is

extremely popular among its users and gets very high marks from the management team. As one

such example she quotes a product unit manager saying ―as we came to recognize the flexibility

in the tool, we essentially changed our process on the fly‖.

4.3 Comverse’s DiME

DiME (Koenig, 2003) is a proprietary integrated and collaborative environment developed and

internally used by Comverse. DiME supports a significant part of the product lifecycle from

definition to development and delivery. DiME was created as a part of software process

improvement effort. Its first deployment took place in 2001 and at that time it was a

revolutionary and unique integrated lifecycle management system. Since then DiME has

significantly evolved, added more functionality and spread to many Comverse’ divisions. By the

end of 2007 DiME had more than 1500 active users within Comverse, while adding few hundred

each year. DiME provides an integrated management system with support that goes far beyond

the pure development activities, offering advanced requirements and release management

features. DiME’s information model comprises organizational, technical and knowledge data

related to the software product lifecycle from definition to delivery and maintenance. DiME is

different from other ALM platforms and environments in the following ways:

 It is a proprietary, internally developed and deployed system. DiME is tailored to the

existing enterprise product lifecycle, yet possesses flexibility to meet new requirements.

Unlike generic commercial tools, DiME had a very detailed features specification. The

challenge of meeting such detailed requirements raised the practical quality of the system

to a level that is usually not demonstrated by off-the-shelf products.

 Its information model is very broad, incorporating organization hierarchy, customer

relations and all data related to product definition, development, delivery and

maintenance. Thus DiME bridges between the ALM and ERP domains.

 It is a mature product that is integrated in a large organization for a number of years.

Unlike most existing ALM solutions, DiME has a long record of successful large scale

organizational implementation.

Application Lifecycle Management Environments: Past, Present and Future

 Page 83 of 121

4.3.1 Design Goals and Architecture

DiME was initiated with a goal of improving existing product development processes that

involved a large number of tools, templates, practices and procedures. The process in place

suffered from data redundancy and lack of consistency across the organization. The DiME team

envisioned a solution for this problem in a form of ―ERP for product definition, development and

delivery‖ – a single integrated and collaborative system managing all the data related to these

three parts of the lifecycle. The DiME design guidelines included (Koenig, 2003):

 a unified information model that will assure data consistency,

 a central repository holding and managing all the data,

 centralized accessibility to the data,

 needs-based views of the data,

 unified user interface,

 cross-tool workflow automation.

Architecturally DiME is built upon SmarTeam (now ENOVIA SmarTeam) (Dassault Systemes,

2009), a platform for Product Lifecycle Management (PLM) solutions. The platform is

responsible for all data management aspects, including data replication and remote access. It also

provides some useful functionality such as native UI and document management capabilities.

Application Lifecycle Management Environments: Past, Present and Future

 Page 84 of 121

Figure 18. DiME Architecture (from (Koenig, 2008))

DiME’s current deployment scheme includes a number of production servers in Israel and the

US. The data is replicated between these servers by the underlying Oracle database.

4.3.2 DiME Evaluation

4.3.2.1 Breadth of lifecycle support

DiME offers very broad lifecycle support – the most comprehensive the author has seen so far.

Its capabilities include (Koenig, 2008):

 Product portfolio management features:

o Product tree management. DiME organizes all products developed by the

company in a single hierarchy. The hierarchy consists of products made of

subsystems and components, both developed in-house and by third parties. The

components can include software and hardware.

 Project planning and management features:

Oracle

Multi-Site

SmarTeam

Server

DiME

Terminal

Server

DiME

Web

Server
Oracle

Multi-Site

SmarTeam

Server

DiME

Terminal

Server

User

Oracle

Multi-Site

SmarTeam

Server

DiME

Web

Server

DiME

Web

Server

DiME

Terminal

Server

Application Lifecycle Management Environments: Past, Present and Future

 Page 85 of 121

o Release management. DiME provides powerful release planning, tracking and

release management features. A release refers to a specific product or component,

may consist of several builds and is linked to a number of development requests.

Product releases are managed as hierarchal object and may contain child releases.

A release has a lifecycle managed by release manager. DiME supports release

planning and tracking by generating release plans and release status reports. The

reporting capabilities of DiME will be described further on. DiME provides the

Risk management features to define, analyze and track the risks that can impact

the release. Release may have associated limitations and issues that are

incorporated in the generated documentation and may be inherited between

releases.

o Iteration management. Releases are composed from builds that incorporate

some subset of the release content. Builds are defined during the release planning,

then delivered and tested.

 Product management features:

o Feature/Service management. Services correspond to the areas of product

functionality. DiME maintains a hierarchy of services and features linked to these

services.

o Requirements management. Requirements are the core information elements of

the DiME’s data model and the product lifecycle. They describe the developed

system at different levels. Feature requests are translated into feature

requirements. Every development request is also accompanied by one or more

development requirements. Requirements can be decomposed, have parent-child

relationships and linked to related requirements and test cases. DiME provides

full traceability between related requirements, test cases, development requests

and services. In addition DiME enables automatic generation of numerous

requirements specifications and testing documents. Requirements can be

maintained in a MS Word document fully synchronized with DiME.

o Alarm management. DiME manages alarms that products issue.

 Development management features:

Application Lifecycle Management Environments: Past, Present and Future

 Page 86 of 121

o Development Requests management. A Development Request (DR) object can

represent any development-related task. Examples of DRs are:

 new feature implementation,

 bug fixing,

 test execution,

 product deployment,

 customization implementation,

 documentation writing.

DR in DiME is in many ways equivalent to a work item in other systems. DRs are

associated with a single Configuration Item (CI) and are committed to a release. A

DR can be decomposed into smaller DRs. DRs have a lifecycle, which can be

customized to the needs of a specific CI, Release or DR type. DRs are tightly

integrated with the related requirements, test cases and release. DiME facilitates

DR effort estimation. The estimation is part of the DR and can be used for

decision making regarding the DR, for planning, progress tracking and reporting.

o Defect management. Defects are development requests that exist in a context of

Problem Report. They are linked with features, test cases, iterations and releases.

 Customer-related management features

o Customer project management. Customer Project is the main tool for ―defining,

analyzing, approving and managing customer commitments and deliveries‖

(Koenig, 2003). The customer project management features are mainly used by

customer project managers and providers of professional services yet are fully

integrated with the rest of the system. Customer Projects are managed by

Customer Project Managers that break down the project into Project Work

Requests (PWR) and track progress of PWR analysis, estimation and execution.

o Customer management. DiME holds information about the company customers

linked to their Customer Projects. This information is synchronized with the ERP

system used by the company.

o Professional services management – DiME facilitates professional services

activities: customization, deployment, training, documentation, support. All these

Application Lifecycle Management Environments: Past, Present and Future

 Page 87 of 121

can be estimated, planned, tracked and analyzed in DiME with full traceability to

all related objects (documents, development requests and requirements).

 Test management. DiME supports test cases definition and linkage to development

requests and requirements. Test Cases can be grouped into Test Groups, which are part of

the Test Specification of some Release. DiME also supports test execution planning. A

Test Case execution is Test Instance; Test Instances are executed as a part of Test

Session, which belongs to a Test Plan linked to a specific Release. Tests are linked to

their related DRs and requirements. The recorded test results are stored in the repository.

DiME facilitates test sessions reporting and tracking, creation of bug status reports and

other data analysis functionality.

 User management. DiME defines and manages a hierarchy of user roles and groups.

Roles are associated with activities they perform. Examples of DiME roles are: CI

(Configuration Item) Manager, Release Manager, Product Manager and DR Current

Responsible. Each role participates in certain lifecycle part of different DiME object

types (products, releases and development requests). DiME’s user model reflects the

actual hierarchy of the organization holding items corresponding to organizational units

(business units, departments, teams).

 Generic capabilities

o Document management. DiME manages documents as versioned objects that

can be linked to other objects in the system. A document can be checked-in and

checked-out and possesses an approval lifecycle. This aspect of document

lifecycle management together with rich document generation capabilities

differentiate DiME from other ALM systems. Both documents revisions and their

metadata are stored in DiME’s repository.

o Knowledge management. Knowledge items can hold any additional information

related to any object in DiME. Examples of knowledge items include: ideas,

lessons learned, known issues and news.

o Event management. DiME offers unique and powerful capabilities in managing

meetings (events). Meetings are an important part of product management; they

accompany almost every part of the lifecycle. Examples of events managed by

Application Lifecycle Management Environments: Past, Present and Future

 Page 88 of 121

DiME are reviews, audits, gate meetings and surveys. The event may have an

associated questionnaire (used in gates and reviews). The event usually results in

a list of action items that are stored and managed by DiME. Events are linked to

their related managed entities, such as DRs, builds and releases.

Figure 19. DiME Events

o Encryption scheme management. Export regulations impose strict requirements

on encryption schemes used by different components of the product. DiME helps

managing and retrieving this information.

There are a number of features missing in DiME that are present in many other ALM systems.

These include source code version control, build engine integration and build execution.

4.3.2.2 Integration

Platform integration. DiME users access its client application via terminal servers. This

solution provides full platform transparency as long as the platform supports remote connection

to the terminal server. This approach however requires additional documents copy between user

working environment and the terminal server session she is using.

Data integration.

Application Lifecycle Management Environments: Past, Present and Future

 Page 89 of 121

Figure 20. DiME Information Model (from (Koenig, 2008))

DiME is based on an integrated information model that ties together entities from numerous

aspects of product lifecycle management. The most important entities are Configuration Item

(CI), Release, Development Request (DR) and Requirement. The basic entity type is DiME

Class. Classes have attributes, can participate in inheritance relationships and can be linked to

other classes. The class model is static – it is rigidly defined by the system’s developers. Users

can’t add new data types, attributes or link types between classes. Many DiME classes have a

lifecycle – a sequence of states the objects of the class go through. In each state the object is

assigned to a responsible user. A special kind of class is User. User can belong to one or more

user roles (e.g., CI Manager, DR Manager and Release Manager). User roles are used by the

system for authorization, workflow and automatic notifications. DiME keeps the history of an

object’s attribute changes.

Application Lifecycle Management Environments: Past, Present and Future

 Page 90 of 121

Presentation integration. DiME has a Windows GUI interface that exposes all its features. No

other presentation integration issues are relevant for it.

Process integration. DiME supports workflows by implementing a notion of lifecycle. Many

DiME classes have a predefined lifecycle. The lifecycle consists of states that a class’ objects go

through. Each state has an associated responsible and fields marking the time of entering and

leaving the state. Transition from state to state is accompanied by email notifications to relevant

users. Transitions are subject to conditions: for example a user can not promote a DR to the

integration state if the DR is not yet committed to a release.

4.3.2.3 Role-based views

While DiME does not offer different functionality subset as a function of the user role, it has

effective means to address this issue. Two aspects of DiME user interface perform the functions

of the role-based views. DiME has a Web interface that exposes a subset of DiME functionality

relevant mostly to the customer-related capabilities. The Web portal integrates DiME with other

features backed by Comverse ERP and other systems.

The second such aspect is implemented in a form of task-based wizards. Every screen of DiME

user interface offers an easy access (using a so-called ―rainbow button‖) to wizards for most

popular tasks related to that screen. This complements the traditional data-centric user interface

that DiME inherits from its SmarTeam platform.

4.3.2.4 Traceability and reporting

DiME exposes rich reporting capabilities. Users can generate new reports on data stored in the

repository using SmarTeam and SQL queries. These queries allow complex conditions and

filtering expressions. The system also provides shortcuts to many predefined reports that are

automatically generated in a number of widespread formats, such as MS Excel. Reports serve as

a convenient front end for many planning and traceability features of DiME. For example, the

DR Test Execution Report informs about all requirements linked to the DR, all test cases linked

to these requirements and the results of these test cases executions. The Requirements Impact

Analysis Report brings together all objects linked to the chosen requirement: requirements, DRs

Application Lifecycle Management Environments: Past, Present and Future

 Page 91 of 121

and test cases. The generated graphs and reports are the main tools for development iterations

and test execution planning and control. One of the most important tools for tracking the release

progress is the Earned Value Chart automatically generated by DiME. DiME saves the daily

earned value points thus allowing to assess release development velocity and to forecast the code

freeze date.

4.3.2.5 Process definition and automation

DiME’s process automation support is based on the abovementioned lifecycle of DiME classes.

It is worth noting that the class’ lifecycle cannot be changed by the user – the user can not add

new states. They are rigidly defined by the system developers. However, the user can mark some

parts of the lifecycle as not relevant. The DiME’s process support could be described as

semi-automatic, there is no programmatic way to trigger state transitions, to specify checks to be

performed prior to state change and to define actions that must happen upon such transitions.

4.3.2.6 Platforms support

DiME client is a Windows application. Currently DiME does not have clients running on other

operating systems. However DiME efficiently solves this problem by exposing access to it client

application via terminal servers. These servers can be accessed from any platform that has a

remote terminal access.

4.3.2.7 Extensibility and openness

DiME is a proprietary system and thus is not meant to be extended by third parties.

4.3.2.8 Distributed teams support

DiME’s distributed development support consists of two aspects. The first aspect is repository

mirroring that is provided by the underlying SmarTeam platform. The second aspect is accessing

DiME by remote users that is achieved by Microsoft Remote Desktop Connection Servers. Thus

remote teams can work with the geographically closest mirror of the data. Currently teams from

India, China, Ukraine, Australia, Israel, the UK and the US are actively using DiME.

Application Lifecycle Management Environments: Past, Present and Future

 Page 92 of 121

4.3.2.9 Scalability

DiME scalability is provided by the underlying SmarTeam platform. It effectively supports

hundreds of simultaneous users without noticeable performance degradation. The scalability tests

conducted by the development team discovered that the performance bottleneck is the amount of

physical memory of the terminal servers.

4.3.2.10 Security

DiME uses SmarTeam access authorization mechanism and manages user authorization and

groups. Its Access Authorization subsystem uses complex algorithms to calculate the entities

each user group is allowed to access based on internal policies and the current group

responsibilities.

DiME currently lacks integration with LDAP and Active Directory thus forcing users to log in

twice.

4.3.2.11 Incremental implementation

DiME’s deployment in Comverse was incremental, by modules (Koenig, 2003). First, the

development divisions installed the development core module, and then the customer project

module was installed by sales and professional services. More modules (Requirements

Management, Document Management and Testing Management) were added gradually to the

installation.

Application Lifecycle Management Environments: Past, Present and Future

 Page 93 of 121

 Figure 21. The DiME Deployment Process (from (Koenig, 2003))

The DiME development team invested a lot of thought, efforts and careful planning in the system

implementation. These investments have paid back – the number of active DiME users grows

from year to year and has topped 1500 in the 2007. The number of active DiME objects

surpassed 400,000 in the same year (Koenig, 2008).

4.3.2.12 Integration and interoperability with existing solutions

DiME has interfaces to Rational ClearQuest defect tracking system, Harvest source control

system, HP Quality Center, Oracle Applications ERP system and with a Comverse internal

purchase order management system.

4.3.2.13 Breadth of vendor support

This subject is not relevant to DiME.

Advanced

Use

Deployment

Decision

Planning

Training

Initial Use

Regular Use

 Initial

exposure

 Road show

 Discussions

 Go decision

Installations

 Data

preparation

 Query

preparation

 Process

tailoring

 Use of

advanced

capabilities:

- reqs mgmt

- test mgmt

- doc mgmt

- knowledge

mgmt

 Support

 Basic training

for users

In-depth

training for

DiME focal

points

Formal

training courses

 Initial use of

DiME core

capabilities

 Active

monitoring

Mentoring

 Regular use

of DiME core

capabilities

 Support

Application Lifecycle Management Environments: Past, Present and Future

 Page 94 of 121

4.3.2.14 Success stories

The successful implementation of DiME inside Comverse is the best witness of its quality.

4.4 Summary

In order to present the study of the ALM solutions in a short and concise form we will bring

together the evaluation of each tool by the classification aspects. Each aspect will get a mark of:

 Needs improvement

 Average

 Strong

This ranking is very approximate, rough and can’t reflect the details and specifics of each aspect.

These details are covered in depth in the content of the corresponding section of this paper.

However having all aspects summarized in one table can provide a better overall picture.

Aspect/Product Jazz Team Concert VSTS DiME

Breadth of

lifecycle support

N/A Average Average Strong

Platform

integration

Average Average (based

on Jazz)

Strong Needs

improvement

Data integration Strong Strong (Open

Services)

Strong Strong

Control

integration

Strong Strong (based on

Jazz)

Strong N/A

(implemented as

a monolithic

system)

Presentation

integration

Strong Strong (based on

Jazz)

Strong Average

Process

integration

Strong Strong (based on

Jazz)

Needs

improvement

Average

(predefined

lifecycle)

Role-based N/A Needs Strong Average

Application Lifecycle Management Environments: Past, Present and Future

 Page 95 of 121

views improvement

Traceability and

reporting

Strong Strong Strong Strong

Process

definition and

automation

Strong Strong (based on

Jazz)

Needs

improvement

Average

(predefined

lifecycle)

Platforms

support

Average Average (based

on Jazz)

Strong Average (though

terminal servers)

Extensibility and

openness

Average Strong (Open

Services)

Strong N/A

Distributed

teams support

Strong Strong (based on

Jazz)

Strong Average

Scalability Average Average (based

on Jazz)

Strong Average

Security Average Average (based

on Jazz)

Strong Average

(proprietary)

Incremental

implementation

Strong Needs

improvement

Needs

improvement

Strong

Interoperability Average Average Average Average

Breadth of

vendor support

Needs

improvement

Needs

improvement

Average N/A

Success stories Needs

improvement

(still new)

Needs

improvement

(still new)

Strong Strong

Application Lifecycle Management Environments: Past, Present and Future

 Page 96 of 121

5 Trends and tendencies of ALME`s

This section summarizes and generalizes the trends in ALME development. It represents the

author’s opinions and conclusions made after studying the past and the present of the field. These

opinions have been formed by reading academic and analysts’ researches, by analyzing the

technical aspects of existing systems, and by numerous discussions both written and oral with

specialists involved with ALM.

One can see more and more interest and activity in the ALM domain and it seems that this

tendency will only grow. Today’s software development management requires integrated

management systems. Individual tools can’t cope effectively with the complexity, the large scale

and the distributed nature of software development. Because of the problem’s difficulty, the

solutions are also complex. Software solutions providers approach this complexity in different

ways, depending on their size and existing portfolio.

5.1 Large ALM software vendors

A number of the largest software vendors have already stepped into the ALME market and

provide integrated solutions. The clear leaders are Microsoft with VSTS and IBM with its Jazz

Platform and Team Concert suite. Many others, such as HP and MKS, have declared about

creation of an integrated ALM solution. Below are some common observations for this vendors’

sector.

 Building from scratch vs. extending existing products. Trying to tie different tools

together is exactly the point of failure of ALM 1.0 systems. The proper solution for the

integrated ALM should be designed and built from the ground up. However the cost of

building such complex system from scratch is very high. It seems that only the largest

companies can afford it. This is the approach both IBM and Microsoft have chosen. The

author doubts that in the near future many companies will follow them. Still, those who

can afford proper design will eventually offer the best proposition. An alternative is to

redesign existing systems so they can be tied together better. It seems that a number of

vendors will choose this option because it can result in much shorter time-to-market.

Application Lifecycle Management Environments: Past, Present and Future

 Page 97 of 121

 Incremental functionality growth. Practically all software vendors have realized that it

is impractical to build a system that will provide all possible functionalities at once.

Instead, they choose a small number of core features to be delivered first and to serve as

a basis for future additions. This process characterizes both Jazz and VSTS. The core set

of features is usually based on the activities where the vendor has most competence.

Thus IBM’s Team Concert first components were the source control and work items

management. This might be related to a lot of experience that Rational gained with its

ClearCase and ClearQuest products. Microsoft put a lot of effort into coding support

features of VSTS. HP’s Project and Portfolio Management Center inherits a lot of

experience from its QualityCenter product. Once the ALM solution platform is in place,

the platform’s vendor adds more features incrementally, while keeping them tightly

integrated.

 Single platform consolidation. Another important trend in this sector is consolidating

the vendor’s products around the ALM platform. The products that can’t be integrated

with the platform are considered legacy. For example, IBM has declared that its leading

configuration management product, ClearCase, will not be further developed. Instead,

the existing customers will be migrating to a Jazz-based configuration management. The

author assumes, that this trend will continue and vendors will try to integrate as many of

their products as possible under a single umbrella. This will both bring maximal value to

the customer and decrease the vendor’s maintenance expenses.

 Rich extensibility features. Large vendors see a lot of value in extension capabilities of

their systems. They prefer to give others powerful options of integrating into their

platform instead of founding their platform on a common standard. Thus they keep their

market dominance and can even extend it. This is probably the very reason there is no

common standard in the ALM domain. One can see this behavior both with Jazz and

VSTS. One particularly interesting example is the story of the ALF (Application

Lifecycle Framework) project (Eclipse Application Lifecycle Framework (ALF) Project)

that aimed to provide an Eclipse-based standard for development tools interoperability.

ALF is an open source project that was supported by a group of software providers such

as Serena Software, Catalyst Systems, Compuware and Segue. However, IBM, which

Application Lifecycle Management Environments: Past, Present and Future

 Page 98 of 121

was an initiator of Eclipse and still is one of the major factors behind it, preferred to stay

away from this initiative and developed its Eclipse-based Jazz platform. Likewise, other

major vendors (Microsoft, HP, MKS and Oracle) have ignored this initiative and now it

seems to be virtually dead. At the same time large vendors invest a lot of thought and

effort in their systems’ extensibility and conduct special partners programs for the

companies that seek to create such extensions. The author believes this tendency will

strengthen.

5.2 Medium and small vendors

Medium-sized and small software companies pursue a different strategy for creating ALM

support systems. Because creating a complete ALME supporting multiple activities is usually too

costly and has low chances of winning the market, they prefer the following strategies:

1. Grouping together with other similar solution providers. The goal is

establishing a common standard platform with each small vendor contributing

some lifecycle support tools based on this platform. One example of such effort

is the ALF project mentioned above. This strategy is problematic in practice. As

we’ve seen in the case of IPSE, it is very hard to agree and establish a common

set of interfaces and infrastructures so that it satisfies many parties with different

needs and priorities. Such infrastructure implementation is both expensive and

time consuming. Unless there is one leading vendor that governs the joint effort

the author believes this strategy will not reach any practical success. This

happened with the ALF project, which was practically abandoned after failing to

gain large vendors’ support.

2. Extending or complementing larger vendors’ solution. Moving their products

to established ALM platforms and filling the functionality gaps seems to be an

option for smaller vendors. Establishing a partnership with large vendors can

expose them to wider market relatively easy. The author thinks that we will see

more products migrating to IBM’s Jazz and Microsoft’s TFS. A number of

products which provide functionality missing in Team Concert and VSTS already

exist.

Application Lifecycle Management Environments: Past, Present and Future

 Page 99 of 121

3. Supplying an integration platform to bind other vendors’ products. The

vendors that take this approach build the ALM engine and adaptors to existing

tools. The engine provides process automation, data synchronization, data

integration and reporting across the tools. The adaptors connect the tools to the

engine, probably by means of some common integration hub. In addition, the

engine provider can supply its own tools for some ALM activities. This scheme

allows the organization to keep its existing tools and practices, preserves the

value invested in them and adds new capabilities that result in integrated and

automated lifecycle. The strategy is appropriate for consulting companies that

can customize the existing engine and adaptors to the specific customer

configuration. One of such providers is Kovair (Kovair). This direction seems

promising, and its potential will grow with utilization of new open source

technologies and new ALM features of the tools. However, binding together

separate tools is a very challenging task and the quality of the tools integration

will never reach the level of the systems originally designed for the integrated

lifecycle. The complexity of building, maintaining and continuous update of

multiple adaptors questions the scalability of this approach. Another problematic

aspect of this solution is a lack of common user interface to the multiple tools

that it binds together.

5.3 New ALM solution providers

Building an ALM platform from zero is expensive and the ALM products market is already

saturated with mature products with numerous customers. Therefore, it is unlikely that many

new companies will try to enter this market. One potential option for a new player aiming to

create a complete ALME solution is to acquire some existing product with significant market

share. The author expects that this strategy will be undertaken by large companies with

products in the disciplines adjacent to ALM: ERP, IT management and Operations

management. Oracle is the first such company trying to enter the ALM market without

Application Lifecycle Management Environments: Past, Present and Future

 Page 100 of 121

having existing products for development support. It has declared this intention in 2007

(Oracle Eyes the ALM Market , 2007). The three main elements of the Oracle’s strategy are:

1. Connecting product development with the business process. This will help Oracle

to expand its presence into the development sector of organization.

2. Focusing on interoperability with other providers’ tools.

3. Connecting product development with operations. This is another aspect of the

lifecycle Oracle is strong at.

Oracle plans to build its ALM proposition with the help of acquisition of companies having

experience in this domain. A recent acquisition of Primavera, a large provider of project and

portfolio management solutions, is another step in this direction. However, there is some

skepticism among analysts regarding Oracle’s ability to provide a solution for non-Oracle

applications (Oracle Eyes the ALM Market , 2007).

Another interesting direction is the converging of ALM and PLM (Product Lifecycle

Management) domains. PLM solutions manage all product related data in non-software

industries, such as automotive, semiconductor and others. Software product lifecycle has a lot of

common with the more generic product lifecycle managed by the PLM systems. The author

expects (based on these domains convergence) that some PLM vendors will try to expand their

offering to the ALM domain. Alternatively, PLM platforms can be utilized to build ALM

solutions (similar to DiME). The latest trend in the PLM products is called PLM 2.0 (Dassault

Systemes). It adds Web 2.0 concepts to PLM solution: Web-based online access, online

collaboration and social community capabilities.

5.4 Open source and ALM

Open source community is a significant factor in the development world today. Open source

tools are very popular and represent a large market share. ALME`s involve open source in a

number of ways:

 Commercial products that open part of their source code and database schemas.

Jazz is one such example. This strategy attracts developers outside of the product vendor

Application Lifecycle Management Environments: Past, Present and Future

 Page 101 of 121

to contribute to the product by creating extensions, exploring the new features and

finding bugs.

 ALM products that interoperate with open source systems. This is a very common

practice and many ALM systems already can integrate with popular open source tools

(e.g., Team Concert Subversion integration) or can employ open source components in

their architecture (e.g., Jazz using Apache Web Server).

 ALME composed from open source components. A lot of lifecycle management

functionality and infrastructure services are available as open source products. It is

possible to combine these tools into an integrated ALM solution. A number of such

solutions exist. They are built by consulting companies that put separate tools together,

manage the connections between them and tailor the solution to the customer. Polarion

(Polarion® ALM — Everthing you need in one single ALM solution) brings together

Subversion version control, Apache Web server, Open API for Website interactions,

OpenSymphony for workflow management and the Eclipse IDE. TeamALM by nexB

(nexB, 2008) also follows this strategy. This approach appeals in its openness, utilization

of existing products and non-dependency on single vendor. On the other hand, the

possibility to integrate separate products not initially built for such integration seems

very questionable. This was the weak point of ALM 1.0, and open source products will

encounter the same problems as the commercial ones. Another potential problem is

dependency on many products without real ability to influence their development.

5.5 Proprietary ALM solutions

While there are a lot of vendors offering products for integrated lifecycle management, there is

still a place for proprietary systems. The following reasons can motivate an organization to

create a proprietary ALM system:

 Existence of an established, well-understood lifecycle management process,

 Unique needs or specific development or operational environment,

 Reluctance to open up its internal business, development and organizational information

to external consultants or vendors,

Application Lifecycle Management Environments: Past, Present and Future

 Page 102 of 121

 Existence of internal competence and experience in building the required solution.

Developing the ALM solution in-house can result in a better match to the organization’s needs,

lesser dependency on outside factors and smoother system adoption. Reusing existing

infrastructure and open source components can accelerate the proprietary systems development.

At the same time, creating and maintaining a complex ALM environment is a large task that will

consume significant amount of resources. Another argument against developing ALM solution

in-house is a tendency of tools standardization, which is especially strong among large

enterprises.

5.6 Technology trends of ALME`s

Existing ALM products are built using multiple and diverse technologies. Still we can highlight a

number of technological trends.

 Reuse of existing technological components. This seems to be a major element in the

architecture of today’s and tomorrow’s ALM systems. Today’s software offers a lot of

reliable, powerful and generic ready solutions for many infrastructure aspects of a

software product. These aspects include data management, Web interface,

communication, user interfaces and many others. Composing a solution from proven and

standard building blocks allows concentrating on the essential functionality the system

should provide.

 Competition between the single-repository and the repository-neutral architectures.

Both architectures are employed in existing systems and both are legitimate. However, it

seems that the flexibility of the repository-neutral approach is a key advantage. While

there is a cost to complexity of managing the data synchronization and integration, a

properly designed ALM platform will hide this complexity from the applications built

upon it.

 Web service interfaces. Web services became a central element of the ALM systems

integration. Standard and simple technology, reliable infrastructures, excellent scalability,

security, distributed support, ease of access and platform compatibility make Web

services a natural choice for the primary communication technology for an ALM

Application Lifecycle Management Environments: Past, Present and Future

 Page 103 of 121

platform. The author believes this trend will become even more dominant together with

SOA (Service Oriented Architecture).

 Integration of communication and collaboration features. A number of ALME`s are

characterized by tight integration of the popular communication and collaboration

technologies. Making instant messaging, chat and RSS feed part of the developer’s

working environment facilitates better communication, makes distributed development

easier and more productive and fits well with modern Agile development practices.

 Process automation and governance. This aspect is one of the ALM pillars and it

should become even more important as ALME`s span to include the operation, IT and

business parts of the organization. Another factor that influences the importance of

process automation is the process standardization trend of large organizations, especially

a wide acceptance of ITIL (Information Technology Infrastructure Library) (ITIL®

Home, 2009). ITIL brings together a set of best practices for IT Service Management.

ITIL has been adopted by hundreds of large organizations worldwide, including

Microsoft, IBM, HP, HSBC and many others. The discussion of ITIL and its relationship

to ALM goes beyond the scope of this work.

 Raising importance of reporting capabilities. In today’s software development with its

large projects developed by globally distributed teams, knowing the state of the project at

every moment of time is as crucial, as it is difficult. The ALM solution must bring

accurate and detailed real-time project state picture that combines data from multiple

tools. These abilities become even more important as ALM systems start serving

organization’s upper management. The author expects to see a lot of effort invested in

advanced reporting and traceability features of ALME`s, including data analysis and data

mining technologies. One of the first implementations of such advanced data analytics

functionality is Orcanos’s Business Intelligence for ALM 2.0 infrastructure (OASIS)

(Orcanos, 2008). OASIS features include real-time dashboards, metrics-based alerts

(based on project data – slow progress, low quality, etc.) and decision-making tools.

While the technology itself seems not mature enough to be a reliable decision-making

enabler, it definitely is very promising and the author expects more ALM platforms to

deliver such functionality.

Application Lifecycle Management Environments: Past, Present and Future

 Page 104 of 121

 Role-based views. Integrated Development Environments (IDE`s) were the first tools

powered by ALM platforms. Having the development activities as the first supported

ones, ALM platforms gradually widen their lifecycle support to other parts of the

organization – product and project management, upper management, IT and operations.

This calls for creating role-specific views into the data managed by an ALME. As the

user audience of ALME`s widens and becomes more heterogeneous, we should see the

increasing importance of the tools and technologies providing role-based views.

Tomorrow’s ALM environments will have to present their data in the format that meets

the user’s expectations, needs and experience. It is also expected more functionality will

become accessible by a light Web interface that requires no specialized software

installation on the client machine and allows accessing the required features regardless of

the client operating system and physical location.

There are many more aspects and directions in this dynamic area of software industry. The trends

listed above are the most important ones the author sees in the ALME space.

Application Lifecycle Management Environments: Past, Present and Future

 Page 105 of 121

6 Conclusions

The work started from a systematic study of application life cycle. The goal of this study was to

establish terminology used throughout this work and to create an accurate and comprehensive

definition of Application Lifecycle Management and environments for ALM. A number of

existing definitions were examined and found to be inconsistent. The definition of ALM was

divided into the following aspects: category, scope, goals, means, managed entities. Using this

methodology the definition of ALM was formulated. This definition unifies the existing

definitions and expresses the common shared vision of ALM.

Based on this understanding of ALM, the study of ALME history was approached. The

evolution of CASE tools was reviewed devoting special attention to the factors driving this

evolution. Two initiatives representing the early attempts to create integrated software

engineering environments were studied: IPSE and PCTE. A special focus was placed on the

ideas behind the initiatives, their achievements and the reasons for their failure. These mistakes

provide important lessons helping to foresee the prospects of current ALM systems. The

mistakes included: excessive focus on technology combined with little attention to real world

user needs, lack of software process understanding, overlooking the organizational and business

aspects and trying to solve the problem too big for existing technology and process maturity.

Lastly ALM 1.0 was reviewed – the approach that tries to reach the ALM goals by tool-to-tool

integration.

Armed with the terminology, the understanding and the definition of ALM and with the lessons

learnt from the mistakes of past initiatives, the author approached the definition of the ALM

classification framework. The developed framework took into account the central aspects of

ALM support as identified in the previous parts of this work. These aspects included: different

kinds of integration and its depth, correspondence to the defined ALM goals and a number of

other technical and non-technical characteristics. The author believes that the developed

framework possesses breadth, accuracy and the right level of details to allow classification of

ALM environments. To the best of the author’s knowledge, no other ALME classification

framework exists currently.

Application Lifecycle Management Environments: Past, Present and Future

 Page 106 of 121

The developed classification framework was applied to a number of ALM environments and

platforms. The chosen platforms and environments (IBM Jazz and Team Concert, Microsoft

Team Foundation Server and Visual Studio Team System and Comverse DiME) represent the

leading directions in the ALM space today. These systems demonstrate breadth of support,

technological and process maturity, scalability, reliability and practical quality fitting the

requirements of large enterprise organizations. Each of the systems has proved itself in

significant success stories. The application of the framework to the chosen products helped

highlighting their architectural and technological patterns and strategies, their strengths and

deficiencies, and trends that will prevail in tomorrow’s ALM domain. This framework usage has

proven its quality and usefulness.

There are a number of topics relevant to the ALM space and ALME`s that were not covered in

this paper. Among them are PLM and ERP, their evolution and relationship with ALM. ITIL, its

Application Management part and ASL (Application Services Library) (Pols, 2005), their

meaning and influence on ALM were also not covered. A number of important leading ALM

solutions, were not classified using the framework. It is possible that adding more systems to the

classification would refine and enrich the framework. All these issues can be a basis for future

work.

In summary, the domain of integrated environments for ALM is growing and progressing

rapidly. All necessary ingredients for this growth are present: the software business became large

enough and complex enough to demand integrated solution; the technology is mature enough to

deliver such solutions with the required functionality, stability and scalability; finally, the

software process itself is mature enough, stable enough and understood well enough. One can see

integrated ALM platforms already being deployed and successfully exploited today to deliver

extremely large and complex software products. The author believes that in the near future non-

integrated ALM tools will be considered legacy and all significant application lifecycle support

products will become part of integrated systems. After that, the author expects to see fusion

between PLM, ERP and ALM systems into a single management platform that governs,

Application Lifecycle Management Environments: Past, Present and Future

 Page 107 of 121

automates and controls all aspects of an organization in a centralized integrated manner. Looking

at DiME one can think that this vision is not that far off.

Application Lifecycle Management Environments: Past, Present and Future

 Page 108 of 121

Appendix 1: List of Abbreviations

ALF Application Lifecycle Framework

ALM Application Lifecycle Management

ALME Application Lifecycle Management Environment

API Application Programming Interface

APSE Ada Programming Support Environment

ASL Application Services Library

CASE Computer Aided Software Engineering

CI Configuration Item

DR Development Request

ECMA European Computers Manufacturers Association

EMF Eclipse Modeling Framework

ERP Enterprise Resource Planning

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IPSE Integrated Programming Support Environment

ISO International Standards Organization

IT Information Technology Infrastructure Library

ITIL Information Technology

LDAP Lightweight Data Access Protocol

MS Microsoft

MSDN Microsoft Developer Network

NIST National Institute of Standards and Technology

OMS Object Management System

OS Operating System

PCTE Common Tool Environment

PLM Product Lifecycle Management

REST Representational State Transfer

RM Reference Model

Application Lifecycle Management Environments: Past, Present and Future

 Page 109 of 121

RSS Really Simple Syndication

SEE Software Engineering Environment

SOA Service Oriented Architecture

TFS Team Foundation Server

UI User Interface

URI Universal Resource Identifier

VPN Virtual Private Network

VSTS Visual Studio Team System

XML Extensible Markup Language

Application Lifecycle Management Environments: Past, Present and Future

 Page 110 of 121

Bibliography

Abramovici, M., & Sieg, O. (2002). Status and Development Trends of Product Lifecycle

Management Systems. Ruhr-University, Chair of IT in Mechanical Engineering, Bochum.

Ada Joint Program Office, United States Department of Defense. (1986). Requirements and

Design Criteria for the Common APSE Interface Set.

Boehm, B. (2006). A View of 20th and 21st Century Software Engineering. 28th international

Conference on Software Engineering, (pp. 12-29). Shanghai, China.

Borland. (2007, April). Open Application Lifecycle Management (ALM). Retrieved January 31,

2009, from Borland: http://www.borland.com/resources/en/pdf/company/open-alm-

whitepaper.pdf

Brown, A. (1993). An Examination of the Current State of IPSE Technology. The 15th

international conference on Software Engineering, (pp. 338-347). Baltimore, Maryland, United

States.

Brown, A., & McDermid, J. A. (1992, March). Learning from IPSE’s Mistakes. IEEE Software ,

23-28.

Buxton, J. (1980). Requirements for Ada Programming Support Environments – Stoneman. U.S.

Department of Defense.

European Computer Manufacturers Association. (1990). Portable Common Tool Environment

(PCTE): Abstract Specification, ECMA-149.

Forte, G. M. (1991). CASE Outlook: Guide to Products and Services. Lake Oswego, Oregon:

CASE Consulting Group.

Fuggetta, A. (1993). A Classification of CASE technology. Computer , 26 (12), 25-38.

Fuggetta, A. (2000). Software process: a roadmap. Conference on The Future of Software

Engineering, (pp. 25-34). Limerick, Ireland.

Humphrey, W. (1989). Managing the Software Process. Addison-Wesley.

IBM. (2008). Collaborative Application Lifecycle Management with Rational Products.

Retrieved July 18, 2008, from IBM: http://www.redbooks.ibm.com/redpieces/pdfs/sg247622.pdf

International Standard Organization (ISO/IEC). (1995). Information technology - Software life

cycle processes. International Standard, Geneva, Switzerland.

Application Lifecycle Management Environments: Past, Present and Future

 Page 111 of 121

Koenig, S. (2003). Integrated Process and Knowledge Management for Product Definition,

Development and Delivery. International Conference on Software - Science Technology and

Engineering. IEEE.

Koenig, S. (2008). Introduction to DiME – Vision, Principles and Basic Concepts. Comverse.

Lewis, G. A., Morris, E., Simanta, S., & Wrage, L. (2008). Why Standards Are Not Enough To

Guarantee End-to-End Interoperability. Seventh International Conference on Composition-Based

Software Systems (pp. 164-173). IEEE.

Long, F., & Morris, E. (1993). An Overview of PCTE: A Basis for Portable Common Tool

Environment.

Meier, J., Taylor, J., Bansode, P., Mackman, A., & Jones, K. (2007, September). Chapter 17 –

Providing Internet Access to Team Foundation Server. Retrieved February 1, 2009, from

MSDN: Microsoft Developer Network: http://msdn.microsoft.com/en-us/library/bb668967.aspx

Meier, J., Taylor, J., Mackman, A., Bansode, P., & Jones, K. (2008, October 15). patterns &

practices: Team Development with Visual Studio Team Foundation Server. Retrieved February

1, 2009, from CodePlex - Open Source Project Hosting: http://www.codeplex.com/TFSGuide

Microsoft. (2007, August). Driving Your Business Forward with Application Life-cycle

Management (ALM). Retrieved January 31, 2009, from Microsoft:

http://download.microsoft.com/download/c/2/8/c28f6cef-ff0e-461b-88c0-

c93a30f3f67b/78249_ALMwpaper_r3t1_mg.pdf

Morgan, D. (1987, April). The Imminent IPSE. Datamation , pp. 6--68.

NIST/ECMA. (1993). Reference Model for Frameworks for Software Engineering

Environments. NIST Special Publication 500-201.

Norman, R., & Chen, M. (1992). Working Together to Integrate CASE. IEEE Software , 9, 12-

16.

Oliver, D. W. (1994). A System Engineering Tool Taxonomy. Retrieved January 31, 2009, from

http://members.tripod.com/Rick_Steiner/ToolTax.pdf

Pols, R. v. (2005). Application Services Library (ASL): A Framework for Application

Management . Van Haren Publishing.

Rotibi, O. (2006). Application Lifecycle Market Analysis. Ovum.

Application Lifecycle Management Environments: Past, Present and Future

 Page 112 of 121

Schwaber, C. (2006). The Changing Face of Application Lifecycle Management. Forrester

Research Inc.

Shaw, K. A. (2007, April). Application Lifecycle Management for the Enterprise. Retrieved

January 31, 2009, from Serena Software:

http://www.serena.com/docs/repository/company/serena_alm_2.0_for_t.pdf

Singh, R. (1998). International Standard ISO/IEC 12207 Software Life Cycle Processes.

Washington: Federal Aviation Administration.

Sommerville, I. (2004). Software Engineering. Addison-Wesley.

Wasserman, A. (1990). Tool Integration in Software Engineering Environments. International

Workshop on Environments (pp. 137-149). Berlin: Springer-Verlag.

Web Bibliography

Apache. (n.d.). Apache Ant - Welcome. Retrieved July 2, 2009, from http://ant.apache.org/

Borland. (2007, July 28). Borland Customer Survey Examines the Current State of the

Application Lifecycle Management Market. Retrieved January 31, 2009, from Borland:

http://www.borland.com/us/company/news/press_releases/2007/08_28_07_borland_customer_su

rvey.html

Borland. (n.d.). Software Solutions for Change Management, Asset Management, Test

Automation, SDLC and more. Retrieved January 31, 2009, from Borland:

http://www.borland.com/

Compuware Corporation. (n.d.). Compuware's Quality Solutions. Retrieved January 31, 2009,

from Compuware Corporation Homepage:

http://www.compuware.com/solutions/3596_ENG_HTML.htm

Dassault Systemes. (n.d.). Dassault Systemes. Retrieved February 1, 2009, from Bringing PLM

2.0 to Life: http://www.3ds.com/fileadmin/PRODUCTS/ENOVIA/PDF/V6Brochure-

0807_hq__FINAL.pdf

Dassault Systemes. (2009). ENOVIA SmarTeam Engineering Express. Retrieved February 1,

2009, from Dassault Systemes: Product Lifecycle Management PLM and 3D Simulation

Software Solutions: http://www.3ds.com/products/enovia/mid-market/smarteam-engineering-

express/overview/

Application Lifecycle Management Environments: Past, Present and Future

 Page 113 of 121

Eclipse. (n.d.). Eclipse Application Lifecycle Framework (ALF) Project. Retrieved February 1,

2009, from Eclipse.org home: http://www.eclipse.org/alf/

Eclipse. (2005, June 16). The Eclipse Modeling Framework (EMF) Overview. Retrieved

February 1, 2009, from Help - Eclipse SDK:

http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/overview/EMF

.html

Harry, B. (2007, October 18). TFS 2008 System Recommendations. Retrieved February 1, 2009,

from bharry's Weblog: http://blogs.msdn.com/bharry/archive/2007/10/18/tfs-2008-system-

recommendations.aspx

IBM. (n.d.). Jazz Overview. Retrieved January 31, 2009, from IBM: http://www-

306.ibm.com/software/rational/jazz/

IBM. (2008, June 24). Jazz Platform Technical Overview. Retrieved February 1, 2009, from Jazz

Community Site: https://jazz.net/learn/LearnItem.jsp?href=content/docs/platform-

overview/index.html

IBM. (n.d.). Open Services for Lifecycle Collaboration. Retrieved February 1, 2009, from Jazz

Community Site: https://jazz.net/open-services/index.jsp

IBM Rational ClearCase V7.1. (n.d.). Retrieved July 2, 2009, from http://www-

01.ibm.com/software/awdtools/clearcase/

IBM Rational ClearQuest V7.1. (n.d.). Retrieved July 02, 2009, from http://www-

01.ibm.com/software/awdtools/clearquest/

IBM. (n.d.). Rational Team Concert Capabilities. Retrieved February 1, 2009, from Jazz

Community Site: https://jazz.net/learn/LearnItem.jsp?href=content/docs/rtc1.0-

capabilities/index.html

IBM. (n.d.). Typical Lifecycle Resources and Relationships. Retrieved February 1, 2009, from

Jazz Community site: https://jazz.net/open-services/resources/alm-resources.jsp

ITIL® Home. (2009). Retrieved February 1, 2009, from http://www.itil-

officialsite.com/home/home.asp

Jonston, S. (2008, September 6). JRS has graduated! Retrieved February 1, 2009, from IBM

developerWorks:Blogs:Tooling platforms and RESTful ramblings:

http://www.ibm.com/developerworks/blogs/page/johnston?entry=jrs_has_graduated

Application Lifecycle Management Environments: Past, Present and Future

 Page 114 of 121

Kovair. (n.d.). Retrieved February 1, 2009, from Kovair Global Software Development Lifecycle

(SDLC) Management: http://www.kovair.com/

Lainhart, T. (2008, March 13). The Jazz Feed Service. Retrieved February 1, 2009, from Jazz

Team Wiki: https://jazz.net/wiki/bin/view/Main/FeedService

Lemieux, J.-M. (2008, November 25). Performance and Scalability. Retrieved February 1, 2009,

from Jazz Team Wiki: https://jazz.net/wiki/bin/view/Main/PerformanceScalability

Lemieux, J.-M. (2008, July 9). Self-hosting by the numbers - June 2008. Retrieved February 1,

2009, from Jazz Community Site: https://jazz.net/blog/index.php/2008/07/09/self-hosting-by-the-

numbers-june-2008/

Lemieux, J.-M. (2008, October 1). Towards a Visual Studio client. Retrieved February 1, 2009,

from Jazz Community Site: https://jazz.net/blog/index.php/2008/10/01/towards-a-visual-studio-

client

Microsoft. (2009). About Visual Studio Team System. Retrieved February 1, 2009, from MSDN:

Microsoft Developer Network: http://msdn.microsoft.com/en-

us/vsts2008/products/bb964615.aspx

Microsoft. (2009). Compare MSDN and Expression Subscriptions. Retrieved February 1, 2009,

from MSDN: Microsoft Development Network: http://msdn.microsoft.com/en-

us/subscriptions/subscriptionschart.aspx

Microsoft. (2008). Cross-Platform Developmet Solutions. Retrieved December 18, 2008, from

Microsoft: http://msdn.microsoft.com/en-us/vstudio/products/cc197931.aspx

Microsoft. (2005, October 25). Microsoft Case Studies: HP. Retrieved February 1, 2009, from

Microsoft: http://www.microsoft.com/casestudies/casestudy.aspx?casestudyid=49127

Microsoft. (2009). Team Foundation Linking Basics. Retrieved February 1, 2009, from MSDN:

Microsoft Developer Network: http://msdn.microsoft.com/en-us/library/bb130164(VS.80).aspx

Microsoft. (2009). Team Foundation Team Projects. Retrieved February 1, 2009, from MSDN:

Microsoft Developer Network: http://msdn.microsoft.com/en-us/library/ms181234(VS.80).aspx

Microsoft. (2009). Visual Studio Development Environment Model. Retrieved February 1, 2009,

from MSDN: Microsoft Developer Network: http://msdn.microsoft.com/de-

de/library/bb165114.aspx

Application Lifecycle Management Environments: Past, Present and Future

 Page 115 of 121

Microsoft. (n.d.). Visual Studio Team System 2008. Retrieved January 31, 2009, from MSDN:

Microsoft Developer Network: http://msdn.microsoft.com/en-us/vsts2008/products/default.aspx

Minium, D. (2006, January). Team Foundation Server Fundamentals: A Look at the Capabilities

and Architecture. Retrieved February 1, 2009, from MSDN: Microsoft Developer Network:

http://msdn.microsoft.com/en-us/library/ms364062.aspx

MKS. (n.d.). Application Lifecycle Management Solutions and more from MKS. Retrieved

January 31, 2009, from MKS: Application Lifecycle Management(ALM), Software Change and

Configuration Management (SCM), ITIL Solutions and More:

http://www.mks.com/solutions/index.jsp

nexB. (2008). TeamALM. Retrieved February 1, 2009, from nexB - The Opne Source ALM

Company: http://www.nexb.com/corp/teamalm.html

Oracle Eyes the ALM Market . (2007, August 07). Retrieved February 1, 2009, from CM

Crossroads - CM Crossroads the Configuration Management Community:

http://www.cmcrossroads.com/content/view/8742/187/

Orcanos. (n.d.). Application Lifecycle Management, ALM 2.0 Software Development Lifecycle.

Retrieved January 31, 2009, from http://www.orcanos.com

Orcanos. (2008, November). Proactive Application Lifecycle Management. Retrieved February

1, 2009, from Application Lifecycle Management, ALM 2.0 Software Development Lifecycle:

http://www.orcanos.com/uploaded/brochures/Proactive%20Application%20Lifecycle%20Manag

ement.pdf

OSGi Alliance. (n.d.). About OSGi Technology. Retrieved July 2, 2009, from

http://www.osgi.org/About/Technology

Pasero, B. (2008, October 22). Using & Extending the Notifier for Events. Retrieved February 1,

2009, from Jazz Team Wiki: https://jazz.net/wiki/bin/view/Main/FoundationNotifierTutorial

Polarion. (n.d.). Polarion® ALM — Everthing you need in one single ALM solution. Retrieved

February 1, 2009, from Polarion Software: Application Lifecycle Management, Requirements

Management, & Team Collaboration Software Solutions:

http://www.polarion.com/products/alm/index.php

Application Lifecycle Management Environments: Past, Present and Future

 Page 116 of 121

Rich, S. (2008, July 7). The smoothest end game ever… but why? Retrieved February 1, 2009,

from Jazz Community Site: https://jazz.net/blog/index.php/2008/07/07/the-smoothest-end-game-

ever-but-why/

Rivieres, J. d. (2007, November 12). Charter for Jazz REST Services. Retrieved February 1,

2009, from Jazz Team Wiki: https://jazz.net/wiki/bin/view/Main/JRSCharter

Saad, S. (2008, November 16). Team Foundation Server: Lessons Learned Through Dogfooding.

Retrieved February 1, 2009, from http://cid-

1d5bb72cc739fed7.skydrive.live.com/self.aspx/Public/DVP311|_Saad|_TFSDogfooding.pptx

Serena Sofware. (n.d.). ALM - Distributed & Mainframe. Retrieved 01 31, 2009, from Serena

Software - Application Development & Business Software Solutions:

http://www.serena.com/products/alm/index.html

Teamprize. (2008). Retrieved February 1, 2009, from Teamprize: Team System for Everyone:

http://teamprise.com/

TFS Migration and Synchronization Toolkit. (2008, September 16). Retrieved February 1, 2009,

from CodePlex - Open Source Project Hosting: http://www.codeplex.com/MigrationSyncToolkit

